
ROBOTC

Reference

Reserved Words • 1© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

Reserved Words

 motor[port3]= 127; //port3 - Full speed forward
 motor[port2]= -127; //port2 - Full speed reverse

 motor[port3]= 127; //port3 - Full speed forward
 motor[port2]= 127; //port2 - Full speed reverse

 bMotorReflected[port2]= 1; //Flip port2’s direction
 motor[port3]= 127; //port3 - Full speed forward
 motor[port2]= 127; //motorA - Full speed forward

Motors

Motor control and some fine-tuning commands.

motor[output] = power;
This turns the referenced VEX motor output either on or off and simultaneously sets its power level.
The VEX has 8 motor outputs: port1, port2... up to port8. The VEX supports power
levels from -127 (full reverse) to 127 (full forward). A power level of 0 will cause the motors to stop.

bMotorReflected[output] = 1; (or 0;)
When set equal to one, this code reverses the rotation of the referenced motor. Once set, the
referenced motor will be reversed for the entire program (or until bMotorReflected[] is set equal to
zero).

This is useful when working with motors that are mounted in opposite directions, allowing the
programmer to use the same power level for each motor.

There are two settings: 0 is normal, and 1 is reverse. You can use “true” for 1 and “false” for 0.

Before:

After:

 motor[port3]= 127; //port3 - full speed forward
 wait1Msec(2000); //Wait 2 seconds
 motor[port3]= 0; //port3 - off

Timing

The VEX allows you to use Wait commands to insert delays into your program. It also supports
Timers, which work like stopwatches; they count time, and can be reset when you want to start or
restart tracking time elapsed.

wait1Msec(wait_time);
This code will cause the robot to wait a specified number of milliseconds before executing the
next instruction in a program. “wait_time” is an integer value (where 1 = 1/1000th of a second).
Maximum wait_time is 32768, or 32.768 seconds.

ROBOTC

Reference

Reserved Words • 2© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

Reserved Words

 int x; //Integer variable x
 x=time1[T1]; //Assigns x=value of Timer 1 (1/1000 sec.)

 motor[port3]= 127; //port3 - full speed forward
 wait10Msec(200); //Wait 2 seconds
 motor[port3]= 0; //port3 - off

 int x; //Integer variable x
 x=time10[T1]; //Assigns x=value of Timer 1 (1/100 sec.)

wait10Msec(wait_time);
This code will cause the robot to wait a specified number of hundredths of seconds before
executing the next instruction in a program. “wait_time” is an integer value (where 1 = 1/100th of
a second). Maximum wait_time is 32768, or 327.68 seconds.

time1[timer]
This code returns the current value of the referenced timer as an integer. The resolution for “time1”
is in milliseconds (1 = 1/1000th of a second).

The maximum amount of time that can be referenced is 32.768 seconds (~1/2 minute)

The VEX has 4 internal timers: T1, T2, T3, and T4

time10[timer]
This code returns the current value of the referenced timer as an integer. The resolution for
“time10” is in hundredths of a second (1 = 1/100th of a second).

The maximum amount of time that can be referenced is 327.68 seconds (~5.5 minutes)

The VEX has 4 internal timers: T1, T2, T3, and T4

 int x; //Integer variable x
 x=time100[T1]; //assigns x=value of Timer 1 (1/10 sec.)

time100[timer]
This code returns the current value of the referenced timer as an integer. The resolution for
“time100” is in tenths of a second (1 = 1/10th of a second).

The maximum amount of time that can be referenced is 3276.8 seconds (~54 minutes)

The VEX has 4 internal timers: T1, T2, T3, and T4

ROBOTC

Reference

Reserved Words • 3© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

Reserved Words

 ClearTimer(T1); //Clear Timer #1

ClearTimer(timer);
This resets the referenced timer back to zero seconds.

The VEX has 4 internal timers: T1, T2, T3, and T4

if(SensorValue(in1) == 1) //If in1 (bumper) is pressed
{
 motor[port3] = 127; //Motor Port 3 full speed forward
}

SensorValue(sensor_input)
SensorValue is used to reference the integer value of the specified sensor port.
Values will correspond to the type of sensor set for that port.

The VEX has 16 analog/digital inputs: in1, in2... to in16

PlayTone(220, 500); //Plays a 220hz tone for 1/2 second

Sounds

The VEX can play sounds and tones using an external piezoelectric speaker attached to a motor
port.

PlayTone(frequency, duration);
This plays a sound from the VEX internal speaker at a specific frequency (1 = 1 hertz) for
a specific length (1 = 1/100th of a second).

Type of Sensor Digital/Analog? Range of Values

Touch Digital 0 or 1

Reflection (Ambient) Analog 0 to 1023

Rotation (Older Encoder) Digital 0 to 32676

Potentiometer Analog 0 to 1023

Line Follower (Infrared) Analog 0 to 1023

Sonar Digital -2, -1, and 1 to 253

Quadrature Encoder Digital -32678 to 32768

Digital In Digital 0 or 1

Digital Out Digital 0 or 1

ROBOTC

Reference

Reserved Words • 4© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

Reserved Words

bVexAutonomousMode = false; //enable radio control
while(true)
{
 motor[port3] = vexRT[Ch3]; //right joystick, y-axis
 //controls the motor on port 3
 motor[port2] = vexRT[Ch2]; //left joystick, y-axis
 //controls the motor on port 2
}

Radio Control

ROBOTC allows you to control your robot using input from the Radio Control Transmitter.

bVexAutonomousMode
Set the value to either 0 for radio enabled or 1 for radio disabled (autonomous mode). You can
also use “true” for 1 and “false” for 0.

Control Port Joystick Channel Possible Values

Right Joystick, X-axis Ch1 -127 to 127

Right Joystick, Y-axis Ch2 -127 to 127

Left Joystick, Y-axis Ch3 -127 to 127

Left Joystick, X-axis Ch4 -127 to 127

Left Rear Buttons Ch5 -127, 0, or 127

Right Rear Buttons Ch6 -127, 0, or 127

Control Port Joystick Channel Possible Values

Right Joystick, X-axis Ch1Xmtr2 -127 to 127

Right Joystick, Y-axis Ch2Xmtr2 -127 to 127

Left Joystick, Y-axis Ch3Xmtr2 -127 to 127

Left Joystick, X-axis Ch4Xmtr2 -127 to 127

Left Rear Buttons Ch5Xmtr2 -127, 0, or 127

Right Rear Buttons Ch6Xmtr2 -127, 0, or 127

If the RF receiver is plugged into Rx 2, the following values apply:

vexRT[joystick_channel]
This command retrieves the value of the specified channel being transmitted.

If the RF receiver is plugged into Rx 1, the following values apply:

bVexAutonomousMode = 0; //enable radio control

bVexAutonomousMode = 1; //disable radio control

ROBOTC

Reference

Reserved Words • 5© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

Reserved Words

srand(16); //Assign 16 as the value of the seed

random(100); //Generates a number between 0 and 100

while(time1[T1]<5000)//While the timer is less than 5 sec...
{
 motor[port3]= 127;//...motor port3 runs at 100%
}

if(sensorValue(bumper) ==1)//the bumper is used as...
{ //...the condition
 motor[port3]= 0; //if it’s pressed port3 stops
}
else
{
 motor[port3]= 127; //if it’s not pressed port3 runs
}

Miscellaneous

Miscellaneous useful commands that are not part of the standard C language.

srand(seed);
Defines the integer value of the “seed” used in the random() command to generate a random
number. This command is optional when using the random() command, and will cause the same
sequence of numbers to be generated each time that the program is run.

random(value);
Generates random number between 0 and the number specified in its parenthesis.

Control Structures

Program control structures in ROBOTC enable a program to control its flow outside of the typical
top to bottom fashion.

task main(){}
Creates a task called “main” needed in every program. Task main is responsible for holding the
code to be executed within a program.

while(condition){}
Used to repeat a {section of code} while a certain (condition) remains true. An infinite while loop
can be created by ensuring that the condition is always true, e.g. “1==1” or “true”.

if(condition){}/else{}
With this command, the program will check the (condition) within the if statement’s parentheses
and then execute one of two sets of code. If the (condition) is true, the code inside the if statement’s
curly braces will be run. If the (condition) is false, the code inside the else statement’s curly braces
will be run instead. The else condition is not required when using an if statement.

ROBOTC

Reference

Reserved Words • 6© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

Reserved Words

int x; //Declares the integer variable x
x = 765; //Stores 765 inside of x

Data Types

Different types of information require different types of variables to hold them.

int
This data type is used to store integer values ranging from -32768 to 32768.

The code above can also be written:

int x = 765; //Declares the integer variable x and...
 //...initializes it to a value of 765

bool x; //Declares the bool variable x
x = 0; //Sets x to 0

bool
This data type is used to store boolean values of either 1 (also true) or 0 (also false).

char x; //Declares the char variable x
x = ‘J‘; //Stores the character J inside of x

char
This data type is used to store a single ASCII character, specified between a set of single quotes.

