
ROBOTC

Reference

Variables • 1©  Carnegie Mellon Robotics Academy  /  For use with VEX® Robotics Systems

task main()
{   
  int speed;

  speed = 50;              
  
  startMotor(port3,speed);
  startMotor(port2,speed);
  wait1(2.0);              
}

Variables with Natural Language

Variables are places to store values (such as sensor readings) for later use, or for use in 
calculations. There are three main steps involved in using a variable:

task main()
{   
  int speed;

  speed = 75;              
  
  startMotor(port3,speed);
  startMotor(port2,speed);
  wait1(2.0);              
}

Declaration
The variable is created by announcing its type, 
followed by its name. Here, it is a variable 
named speed that will store an integer.

1.  Introduce (create or “declare”) the variable
2.  Give (“assign”) the variable a value
3.  Use the variable to access the stored value

Assignment
The variable is assigned a value. The variable 
speed now contains the integer value 75.

Use
The variable can now “stand in” for any value of the appropriate 
type, and will act as if its stored value were in its place.

Here, both startMotor commands expect integers for power 
settings, so the int variable speed can stand in. The commands set 
their respective motor powers to the value stored in speed, 75.

In the example above, the variable “speed” is used to store a number, and then retrieve 
and use that value when it is called for later on. Specifically, it stores a number given by the 
programmer, and retrieves it twice in the two different places that it is used, once for each of the 
startMotor commands. This way both motors are set to the same value, but more interestingly, 
you would only need to change one line of code to change both motor powers.

One line changed
The value assigned to speed is now 50 instead of 75.

Changed without being changed
No change was made to the program here, but 
because these lines use the value contained in the 
variable, both lines now tell their motors to run at 
a power level of 50 instead of 75.

This example shows just one way in which variables can be used, as a convenience for 
the programmer. With a robot, however, the ability to store sensor values (values that are 
measured by the robot, rather than set by the programmer) adds invaluable new 
capabilities. It gives the robot the ability to take measurements in one place and deliver them 
in another, or even do its own calculations using stored values. The same basic rules are 
followed, but the possibilities go far beyond just what you’ve seen so far!



ROBOTC

Reference

Variables • 2©  Carnegie Mellon Robotics Academy  /  For use with VEX® Robotics Systems

Declaration Rules
In order to declare a variable, you must declare its type, followed by its name. Here are some 
specifics about the rules governing each:

Proper Variable 
Names

Improper Variable 
Names

linecounter line counter

threshold threshold!

distance3 3distance

timecounter time1[T1]

Rules for Variable Names

•  A variable name can not have spaces in it

•  A variable name can not have symbols in it

•  A variable name can not start with a number

•  A variable name can not be the same as an     
    existing reserved word 

Data Type Description Example Values Code

Integer
Positive and negative whole numbers, as 
well as zero.

-35, -1, 0, 
33, 100, 345

int 

Floating Point 
Decimal

Numeric values with decimal points (even 
if the decimal part is zero).

-.123, 0.56, 3.0, 
1000.07

float

Boolean
True or False. Useful for expressing the 
outcomes of comparisons.

true, false bool

Character
Individual characters, such as letters and 
numbers, placed in single quotes.

‘n’, ‘5’, ‘Z’ char

String
Multiple characters in a row, can 
optionally form sentences and words, 
placed in double quotes.

“Hello World!”, 
“asdf”, “Zebra 
Number 56”

string

Rules for Variable Types
•  You must choose a data type that is appropriate for the value you want to store

The following is a list of data types most commonly used in ROBOTC:

Variables with Natural Language



ROBOTC

Reference

Variables • 3©  Carnegie Mellon Robotics Academy  /  For use with VEX® Robotics Systems

Assignment and Usage Rules
Assignment of values to variables is pretty straightforward, as is the use of a variable in a 
command where you wish its value to be used.

Rules for Variable Usage

•  “Use” a variable simply by putting its name where you want its value to be used

•  The current value of the variable will be used every time the variable appears

Examples:

Statement Description

motorPower = 75; Stores the value 75 in the variable 
“motorPower”

sonarVariable = SensorValue(sonarSensor);
Stores the current sensor reading 
of the sensor “sonarSensor” in the 

variable “sonarVariable”

sum = variable1 + variable2;

Adds the value in “variable1” 
to the value in “variable2”, and 
stores the result in the variable 

“sum”

average = (variable1 + variable2)/2;

Adds the value in “variable1” 
and the value in “variable2”, 

then divides the result by 2, and 
stores the final resulting value in 

“average”

count = count + 1;

Adds 1 to the current value of 
“count” and places the result back 
into “count” (effectively, increases 

the value in “count” by 1)

int zero = 0;

Creates the variable x with an 
initial value of 0 (combination 
declaration and assignment 

statement)

Rules for Assignment

•  Values are assigned using the assignment operator = (not ==)

•  Assigning a value to a variable that already has a value in it will overwrite the old value  
    with the new one

•  Math operators (+, -, *, /) can be used with assignment statements to perform calculations  
    on the values before storing them

•  A variable can appear in both the left and right hand sides of an assignment statement;  
    this simply means that its current value will be used in calculating the new value

•  Assignment can be done in the same line that a variable is declared 
    (e.g. int x = 0; will both create the variable x and put an initial value of 0 in it)

Variables with Natural Language


