
ROBOTC

Reference

© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems Functions • 1

void rotateArm()
{
 startMotor(armMotor,63);
 wait(3.25);
 stopMotor(armMotor);
}

task main()
{
 rotateArm();
}

A function is a group of statements that are run as a single unit when the function is called
from another location, such as task main(). Commonly, each function will represent a specific
behavior in the program.

Functions offer a number of distinct advantages over basic step-by-step coding.

• They save time and space by allowing common behaviors to be written as functions, and then
 run together as a single statement (rather than re-typing all the individual commands).

• Separating behaviors into different functions allows your code to follow your planning more
 easily (one function per behavior or even sub-behavior).

• Through the use of parameters, multiple related (but not identical) tasks can be handled with
 a single, intuitive function.

1. Declare Your Function
Declare the function by using the word “void”,
followed by the name you wish to give to the
function. It’s helpful to give the function a
name that reflects the behavior it will perform.

Within the function’s {curly braces}, write the
commands exactly as you would normally.
When the function is called, it will run the lines
between its braces in order, just like task main
does with the code between its own braces.

2. Call Your Function
Once your declare your function, it acts like a
new command in the language of ROBOTC.
To run the function, simply “call” it by name
– remember that its name includes the
parentheses – followed by a semicolon.

Using Functions

Functions must be created and then run separately. A function is created by “declaring” it,
and run by “calling” it.

Functions with Natural Language

ROBOTC

Reference

© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems Functions • 2

void rotateArm(float time)
{
 startMotor(armMotor,63);
 wait(time);
 stopMotor(armMotor);
}

task main()
{
 rotateArm(3.25);
}

void rotateArm(float time)
{
 startMotor(armMotor,63);
 wait(time);
 stopMotor(armMotor);
}

task main()
{
 rotateArm(3.25);
}

Advanced Functions
Parameters

Parameters are a way of passing information into a function, allowing the function to run its
commands differently, depending on the values it is given. It may help to think of the parameters
as placeholders – all parameters must be filled in with real values when the function is called, so
in the places where a parameter appears, it will simply be replaced by its given value.

1. Declare parameter
A parameter is declared in the same way that
a variable is (type then name) inside the
parentheses following the function name.

2. Use parameter
The parameter value behaves like a
“placeholder”. Whatever value is provided
for the parameter when the function is called
will appear here.

3. Call function with parameter
When the function is called, a value must be
provided within the parentheses to take the
place of the parameter inside the function.

startMotor(armMotor,63);
wait(3.25);
stopMotor(armMotor);

Substitution
The arrows in the illustration to the right show
the general “path” of the value from the place
where it is provided in the function call, to
where its value is substituted into the function.

The function will run as if the code read as it
does in the bottom box.

ROBOTC

Reference

© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems Functions • 3

int squareOf(int t)
{
 int sq;
 sq = t * t;
 return sq;
}

task main()
{
 startMotor(rightMotor,63);
 wait(squareOf(100));
 stopMotor(rightMotor);
}

Advanced Functions
Return Values

Not all functions are declared “void”. Sometimes, you may wish to capture a mathematical
computation in a function, for instance, or perform some other task that requires you to get
information back out of the function at the end. The function will “return” a value, causing
it to behave as if the function call itself were a value in the line that called it.

int squareOf(int t)
{
 int sq;
 sq = t * t;
 return sq;
}

task main()
{
 startMotor(rightMotor,63);
 wait(squareOf(100));
 stopMotor(rightMotor);
}

1. Declare return type
Because the function will give a value back at
the end, it must be declared with a type other
than void, indicating what type of value it will
give.

2. Return value
The function must “return” a value. In
this case, it is returning the result of a
computation, the square of the parameter.

3. Function call becomes a value
The function call itself becomes a value to
the part of the program that calls it. Here,
it is acting as an integer value for the wait
command.

 wait(10000);

Substitution
The arrows in the illustration to the right show
the general “path” of the value as it is returned
and goes back into the main function.

The parameter 100 is used (as t in the function)
to calculate the value, but is not shown in the
arrows.

The function will run as if the code read as it
does in the bottom box.

