
ROBOTC

Reference

Quadrature Encoders • 1© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

Quadrature Shaft Encoders Overview
The Quadrature Shaft Encoder detects the rotation of an axle that passes through it. It
has a resolution of 360 counts per revolution (2 count intervals), and can distinguish
between clockwise and counterclockwise rotation.

The Quadrature Shaft Encoder is an upgrade from the original Shaft Encoder. The original version
contains only one internal sensor, which detects the slits in an internal disc as it spins, giving it a
resolution of 90 counts per revolution. Only one output channel (wire) is needed to transmit the
sensor data to the Vex Microcontroller.

The upgraded Quadrature
Shaft Encoder includes
a second optical sensor
which allows the sensor
to detect if the internal
disk is spinning clockwise
or counterclockwise and
increases the resolution to
360 counts per revolution
(2 count intervals). Two
output channels (wires)
are needed to transmit its
sensor data to the Vex.

Original Shaft Encoder
Only has one output wire.

Quadrature Shaft Encoder
Has two output wires.

When wiring the Quadrature Shaft Encoder, both wires must be
in adjacent digital ports. For example, if the top wire is in digital
port 1, the bottom wire must be in digital port 2.

If you put the top wire in the lower numbered port, and the
bottom wire in higher numbered port, then the encoder will
record clockwise rotations as positive, and counterclockwise
rotations as negative. Switching the wire ports switches the
positive and negative directions.

Top wire

Bottom wire

ROBOTC

Reference

Quadrature Encoders • 2© Carnegie Mellon Robotics Academy / For use with VEX® Robotics Systems

Programming with the Quadrature Shaft Encoders in Natural Language is fairly straightforward.
The sample programs below demonstrate how to control your robot’s movements using
Quadrature Shaft Encoders. The Natural Language Library automatically accounts for which
direction the encoders are rotating, so you do not need to worry about positive or negative counts.

	

Driving Forward and Reverse with Quadrature Shaft Encoders
This code will move the robot forward for two rotations, and then in reverse for 720 encoder
counts. Since there are 360 counts in each rotation, 720 counts should move the robot the
same distance as the two rotations.

task main()
{
 robotType(recbot); // We are using the Recbot.

 forward(63); // Move forward at speed 63.
 untilRotations(2.0, dgtl1); // Wait until the wheels have rotated 2.0
 // times, the sensor is in digital port 1
 // (the second wire is in digital port 2)

 stop(); // Stop.

 wait(0.5); // Wait 0.5 seconds.

 backward(63); // Move backward at speed 63.
 untilEncoderCounts(720, dgtl1); // Wait until the encoders count is 720
 // times
 stop(); // Stop.
}

Making a Right Point Turn with Quadrature Shaft Encoders
This code will cause the robot to make a right point turn for 1.1 rotations. Note that this is
rotations of the shaft encoder, not the robot.

Quadrature Shaft Encoders

task main()
{
 robotType(recbot); // We are using the Recbot.

 pointTurn(right); // Make a right point turn in place.
 untilRotations(2.0, dgtl1); // Wait until the wheels have rotated 2.0
 // times, the sensor is in digital port 1
 // (the second wire is in digital port 2)
 stop(); // Stop.
}

Natural Language Sample Code

