
ROBOTC

Boolean Logic • 1©  Carnegie Mellon Robotics Academy  /  For use with VEX® Robotics Systems

Reference

Boolean Logic

(Conditions)

ROBOTC control structures that make decisions about which pieces of code to run, such as while 
loops and if-else conditional statements, always depend on a (condition) to make their decisions. 
ROBOTC (conditions) are always Boolean statements. They are always either true or false at 
any given moment. Try asking yourself the same question the robot does – for example, whether the 
value of the Ultrasonic Sensor is greater than 45 or not. Pick any number you want for the Ultrasonic 
Sensor value. The statement “the Ultrasonic Sensor’s value is greater than 45” will still either be true, 
or be false.

Condition Ask yourself... Truth value
1==1 Is 1 equal to 1? True, always

0==1 Is 0 equal to 1? False, always

Condition Ask yourself... Truth value

SensorValue(sonarSensor) > 45 Is the value of the Ultrasonic 
Sensor greater than 45?

True, if the current 
value is more than 
45 (for example, if 

it is 50).

False, if the 
current value is 

not more than 45 
(for example, if it 

is 40).

Truth Values

Robots don’t like ambiguity when making decisions. They need to know, very clearly, which choice 
to make under what circumstances. As a consequence, their decisions are always based on the 
answers to questions which have only two possible answers: yes or no, true or false. Statements 
that can be only true or false are called Boolean statements, and their true-or-false value is 
called a truth value.

Fortunately, many kinds of questions can be phrased so that their answers are Boolean (true/false). 
Technically, they must be phrased as statements, not questions. So, rather than asking whether 
the sky is blue and getting an answer yes or no, you would state that “the sky is blue” and then 
find out the truth value of that statement, true (it is blue) or false (it is not blue).

Note that the truth value of a statement is only applicable at the time it is checked. The sky could 
be blue one minute and grey the next. But regardless of which it is, the statement “the sky is blue” 
is either true or false at any specific time. The truth value of a statement does not depend on 
when it is true or false, only whether it is true or false right now.

Some (conditions) have the additional benefit of ALWAYS being true, or ALWAYS being false. 
These are used to implement some special things like “infinite” loops that will never end (because  
the condition to make them end can never be reached!).



ROBOTC

Reference

Boolean Logic • 2©  Carnegie Mellon Robotics Academy  /  For use with VEX® Robotics Systems

Reference

Boolean Logic

Comparison Operators

Comparisons (such as the comparison of the Ultrasonic sensor’s value against the number 45) are 
at the core of the decision-making process. A well-formed comparison typically uses one of a very 
specific set of operators, the “comparison operations” which generate a true or false result. Here are 
some of the most common ones recognized by ROBOTC.

ROBOTC 
Symbol Meaning Sample comparison Result

== “is equal to”

50 == 50 true
50 == 100 false
100 == 50 false

!= “is not equal 
to”

50 != 50 false
50 != 100 true
100 != 50 true

< “is less than”

50 < 50 false
50 < 100 true
100 < 50 false

<= “is less than 
or equal to”

50 <= 50 true
50 <= 100 true
50 <= 0 false

> “is greater 
than”

50 > 50 false
50 > 100 false
100 > 50 true

>= Greater than 
or equal to

50 >= 50 true
50 >= 100 false
100 >= 50 true

Evaluating Values

The “result” of a comparison is either true or false, but the robot takes it one step further. The 
program will actually substitute the true or false value in, where the comparison used to be. Once  
a comparison is made, it not only is true or false, it literally becomes true or false in the program.

if (50 > 45) ...

if (true) ...



ROBOTC

Reference

Boolean Logic • 3©  Carnegie Mellon Robotics Academy  /  For use with VEX® Robotics Systems

Reference

Boolean Logic

Logical Operators

Some (conditions) need to take more than one thing into account. Maybe you only want the robot 
to run if the traffic light is green AND there’s no truck stopped in front of it waiting to turn. Unlike 
the comparison operators, which produce a truth value by comparing other types of values (is one 
number equal to another?), the logical operators are used to combine multiple truth values into 
one single truth value. The combined result can then be used as the (condition).

Example:
Suppose the value of a Light Sensor named sonarSensor is 50, and at the same time, the value of 
a Bumper Switch named bumper is 1 (pressed).

The Boolean statement (sonarSensor > 45) && (bumper == 1) would be evaluated...v

ROBOTC 
Symbol Meaning Sample comparison Result

&& “AND”

true && true true
true && false false
false && true false
false && false false

|| “OR”

true || true true
true || false true
false || true true
false || false false

(50 > 45) && (1 == 1)

true && true

true

Use in Control Structures

“Under the hood” of all the major decision-making control structures is a simple check for the 
Boolean value of the (condition). The line if (SensorValue(bumper) == 1)... may read 
easily as “if the bumper switch is pressed, do...”, but the robot is really looking for if(true) or 
if(false). Whether the robot runs the “if true” part of the if-else structure or 
the “else” part, depends solely on whether the (condition) boils down to true or false.

if (50 > 45) ...

if (true) ...


