
ROBOTC Natural Language - NXT Reference:

ROBOTC Natural Language - NXT Reference • 1© 2010 Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Robot Type
Choose which robot you want to write a program for. Note that not including this command defaults to
"robotType(none);" Also please note that this command should be the first thing in your "task main()".

This snippet of code will set the robot type to none by
default, skipping the setup process. You must manually set
the motors and sensors in the 'Motors and Sensors Setup'
menu.

Parameters: type

Valid Robot Types for type:
none - this will not set up any motors and sensors for you (this is the default.)
rembot - sets the motors and sensors to match a default REMBOT.

robotType(type);

Command:

Usage without Parameters:

robotType();

Usage with Parameters:

robotType(rembot);
This snippet of code will set the robot type to rembot. This
will automatically set up the motor and sensor ports to
match those of a default REMBOT.

Setup Functions:

ROBOTC Natural Language - NXT Reference:

ROBOTC Natural Language - NXT Reference • 2© 2010 Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Start Motor
Set a motor to a speed.

This snippet of code will run the motor in motor-port A at
speed 75 for 1.0 seconds and then stop it. The default
motor-port is motorA and the default speed is 75 for
startMotor().

Parameters: motor, speed

Acceptable Motors for motor:
MOTOR ports A through C (and your names for them given in Motors and Sensors Setup.)

Valid Range Values for speed:
(reverse) -100 to 100 (forward) where 0 is stop.

startMotor(motor, speed);

Command:

Usage without Parameters:

startMotor();
wait();
stopMotor();

Usage with Parameters:

startMotor(motorB, -25);
wait(0.5);
stopMotor(motorB);

This snippet of code will run the motor in motor-port B at
speed -25 for 0.5 seconds and then stop it.

Stop Motor
Stops a motor.

This snippet of code will run the motor in motor-port A at
speed 75 for 1.0 seconds and then stop it. The default
motor-port is motorA for stopMotor().

Parameters: motor

Acceptable Motors for motor:
MOTOR ports A through C (and your names for them given in Motors and Sensors Setup.)

stopMotor(motor);

Command:

Usage without Parameters:

startMotor();
wait();
stopMotor();

Usage with Parameters:

startMotor(motorB, -25);
wait(0.5);
stopMotor(motorB);

This snippet of code will run the motor in motor-port B at
speed -25 for 0.5 seconds and then stop it.

ROBOTC Natural Language - NXT Reference:

ROBOTC Natural Language - NXT Reference • 3© 2010 Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Wait in Milliseconds
Wait an amount of time in milliseconds. The robot continues to do what it was doing during this time.

This snippet of code will run the robot forward for 1000
milliseconds (1.0 seconds) and then stop. The default time
is 1000 (milliseconds) for waitInMilliseconds().

Parameters: time

Valid Range Values for time:
0 to 3600000 and up.

waitInMilliseconds(time);

Command:

Usage without Parameters:

forward();
waitInMilliseconds();
stop();

Usage with Parameters:

forward(50);
waitInMilliseconds(2730);
stop();

This snippet of code will run the robot forward at half
speed for 2730 milliseconds (2.73 seconds) and then stop.

Wait
Wait an amount of time measured in seconds. The robot continues to do what it was doing during this time.

This snippet of code will run the robot forward for 1.0
seconds and then stop. The default time is 1.0 (seconds)
for wait().

Parameters: time

Valid Range Values for time:
0.0 to 3600.0 and up.

wait(time);

Command:

Usage without Parameters:

forward();
wait();
stop();

Usage with Parameters:

forward(50);
wait(2.73);
stop();

This snippet of code will run the robot forward at half
speed for 2.73 seconds and then stop.

Wait Functions:

ROBOTC Natural Language - NXT Reference:

ROBOTC Natural Language - NXT Reference • 4© 2010 Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Forward
Both wheels rotate forward at the same speed, causing the robot to move forward.

Parameters: speed

Valid Range Values for speed:
0 to 100 (however forward() will always move your robot forward.)

forward(speed);

Command:

Robot Movement Functions:
Note that for desirable results with the following set of functions, you must use the "robotType();" Setup Function with type rembot
in the beginning of your "task main()".

This snippet of code will run the robot forward for 1.0
seconds and then stop. The default speed is 75 for
forward().

Usage without Parameters:

forward();
wait();
stop();

Usage with Parameters:

forward(50);
wait(2.0);
stop();

This snippet of code will run the robot forward at half
speed for 2.0 seconds and then stop.

Backward
Both wheels rotate backward at the same speed, causing the robot to move backward.

Parameters: speed

Valid Range Values for speed:
-100 to 0 (however backward() will always move your robot backward.)

backward(speed);

Command:

This snippet of code will run the robot backward for 1.0
seconds and then stop. The default speed is -75 for
backward().

Usage without Parameters:

backward();
wait();
stop();

Usage with Parameters:

backward(-50);
wait(2.0);
stop();

This snippet of code will run the robot backward at half
speed for 2.0 seconds and then stop.

ROBOTC Natural Language - NXT Reference:

ROBOTC Natural Language - NXT Reference • 5© 2010 Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Point Turn
Both wheels rotate at the same speed but in opposite directions, causing the robot to turn in place.

This snippet of code will make the robot turn right in place
at speed 75 for 1.0 seconds and then stop. The default
direction and speed are right and 75 for pointTurn().

Parameters: direction, speed

Valid Directions for direction:
left and right.

Valid Range Values for speed:
-100 to 100.

pointTurn(direction, speed);

Command:

Usage without Parameters:

pointTurn();
wait();
stop();

Usage with Parameters:

pointTurn(left, 50);
wait(0.4);
stop();

This snippet of code will make the robot turn left in place
at half speed for 0.4 seconds.

Swing Turn
One wheel rotates while the other does not move, causing the robot to make a wide turn around the stopped wheel.

This snippet of code will make the robot make a wide
right turn at speed 75 for 1.0 seconds and then stop.
The default direction and speed are right and 75 for
swingTurn().

Parameters: direction, speed

Valid Directions for direction:
left and right.

Valid Range Values for speed:
-100 to 100.

swingTurn(direction, speed);

Command:

Usage without Parameters:

swingTurn();
wait();
stop();

Usage with Parameters:

swingTurn(left, 50);
wait(0.75);
stop();

This snippet of code will make the robot make a wide left
turn at half speed for 0.75 seconds.

ROBOTC Natural Language - NXT Reference:

ROBOTC Natural Language - NXT Reference • 6© 2010 Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Stop
Both wheels do not move, causing the robot to stop.

This snippet of code will run the robot forward for
1.0 seconds and then stop. (Note that there are no
parameters for stop().

Parameters: N/A

stop();

Command:

Usage without Parameters:

forward();
wait();
stop();

Usage with Parameters:

forward(50);
wait(2.0);
stop();

This snippet of code will run the robot forward at half
speed for 2.0 seconds and then stop.

Line Track for Time
The robot will track a dark line on a light surface for a specified time in seconds.

This snippet of code will make the robot follow a dark
line on a light surface for 5.0 seconds using a threshold
of 45 and a light sensor in sensor-port S3 and then
stop. These values and sensors are the defaults for
lineTrackForTime().

Parameters: time, threshold, sensorPort

Valid Range Values for time:
0 to 3600.0 and up.

Valid Range Values for threshold:
(dark) 0 to 100 (light).

Acceptable Sensors for sensorPort:
SENSOR ports 1 through 4 (and your names for them given in Motors and Sensors Setup.)

lineTrackForTime(time, threshold, sensorPort);

Command:

Usage without Parameters:

lineTrackForTime();
stop();

Usage with Parameters:

lineTrackForTime(7.5, 75, S2);
stop();

This snippet of code will make the robot follow a dark line
on a light surface for 7.5 seconds, using a threshold of 75
and a light sensor in sensor-ports 2 and then stop.

ROBOTC Natural Language - NXT Reference:

ROBOTC Natural Language - NXT Reference • 7© 2010 Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Line Track for Rotations
The robot will track a dark line on a light surface for a specified distance in encoder rotations.

This snippet of code will make the robot follow a dark
line on a white surface for 3.0 rotations using a threshold
of 45 and a light sensor in sensor-ports S3 and then
stop. These values and sensors are the defaults for
lineTrackForRotations().

Parameters: rotations, threshold, sensorPort

Valid Range Values for rotations:
0 to 65000.0 and up.

Valid Range Values for threshold:
(dark) 0 to 100 (light).

Acceptable Sensors for sensorPort:
SENSOR ports 1 through 4 (and your names for them given in Motors and Sensors Setup.)

lineTrackForRotations(rotations, threshold, sensorPort);

Command:

Usage without Parameters:

lineTrackForRotations();
stop();

Usage with Parameters:

lineTrackForRotations(4.75, 75, S2);
stop();

This snippet of code will make the robot follow a dark line
on a white surface for 4.75 rotations, using a threshold of
75 and a light sensors in sensor-port S2 and then stop.

ROBOTC Natural Language - NXT Reference:

ROBOTC Natural Language - NXT Reference • 8© 2010 Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Move Straight for Time
The robot will use encoders to maintain a straight course for a specified length of time in seconds.

This snippet of code will make the robot move forward,
maintaining a straight heading for 5.0 seconds using the
built-in encoders on motor-ports motorB and motorC, and
then stop. These values and sensors are the defaults for
moveStraightForTime().

Parameters: time, rightMotorEncoder, leftMotorEncoder

Valid Range Values for time:
0 to 3600.0 and up.

Acceptable Sensors for rightMotorEncoder, leftMotorEncoder:
MOTOR ports A through C (and your names for them given in Motors and Sensors Setup.)

moveStraightForTime(time, rightMotorEncoder, leftMotorEncoder);

Command:

Usage without Parameters:

moveStraightForTime();
stop();

Usage with Parameters:

moveStraightForTime(7.5, motorC, motorA);
stop();

This snippet of code will make the robot move forward,
maintaining a straight heading for 7.5 seconds using the
built-in encoders on motor-ports C and A, and then stop.

Move Straight for Rotations
The robot will use encoders to maintain a straight course for a specified distance in rotations.

This snippet of code will make the robot move forward,
maintaining a straight heading for 1.0 rotations using the
built-in encoders on motor-ports motorB and motorC, and
then stop. These values and sensors are the defaults for
moveStraightForRotations().

Parameters: rotations, rightMotorEncoder, leftMotorEncoder

Valid Range Values for rotaions:
0 to 65000.0 and up.

Acceptable Sensors for rightEncoder, leftEncoder:
MOTOR ports A through C (and your names for them given in Motors and Sensors Setup.)

moveStraightForRotations(time, rightMotorEncoder, leftMotorEncoder);

Command:

Usage without Parameters:

moveStraightForRotations();
stop();

Usage with Parameters:

moveStraightForRotations(4.75, motorC, motorA);

stop();

This snippet of code will make the robot move forward,
maintaining a straight heading for 4.75 rotations using the
built-in encoders on motor-ports C and A, and then stop.

ROBOTC Natural Language - NXT Reference:

ROBOTC Natural Language - NXT Reference • 9© 2010 Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Tank Control
The robot will be remote controlled in such a way that the right motor is mapped to the right joystick and the left
motor is mapped to the left joystick.

This snippet of code will remote control the robot using
"tank control" with a "dead" threshold of 10. The default
right and left joysticks and threhold are joystick.joy1_
y2, joystick.joy1_y1, and 10 for tankControl().

Parameters: rightJoystick, leftJoystick, threshold

Valid Channels for rightJoystick, leftJoystick:
Any of the "joystick." channels will work, however joystick.joy1_y2 and joystick.joy1_y1 make the
most sense for this application.

tankControl(rightJoystick, leftJoystick, threshold);

Command:

Usage without Parameters:

while(true)
{
 tankControl();
}

Usage with Parameters:

while(true)

{

 tankControl(joystick.joy1_y1, joystick.joy1_y2, 5);

}

This snippet of code will remote control the robot using
"tank control" with channel joy1_y1 as the right joystick and
channel joy1_y2 as the left joystick with a threshold of 5.

Arcade Control
The robot will be remote controlled in such a way that the movement of the robot is mapped to a single joystick,
much like a retro arcade game.

This snippet of code will remote control the robot using
"arcade control" with a "dead" threshold of 10. The
default vertical and horizontal joysticks and threhold are
joystick.joy1_y2, joystick.joy1_x2, and 10 for
tankControl().

Parameters: verticalJoystick, horizontalJoystick, threshold

Valid Channels for verticalJoystick, horizontalJoystick:
Any of the "joystick." channels will work, however joystick.joy1_y2 and joystick.joy1_x2 make the
most sense for this application.

arcadeControl(verticalJoystick, horizontalJoystick, threshold);

Command:

Usage without Parameters:

while(true)
{
 arcadeControl();
}

Usage with Parameters:

while(true)

{

 arcadeControl(joystick.joy1_y1, joystick.joy1_y2, 5);

}

This snippet of code will remote control the robot using
"arcade control" with channel joy1_y1 as the vertical
joystick and channel joy1_x1 as the horizontal joystick with
a threshold of 5. (Uses the left joystick where default uses
the right.)

ROBOTC Natural Language - NXT Reference:

ROBOTC Natural Language - NXT Reference • 10© 2010 Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Until Touch
The robot continues what it was doing until the touch sensor is pressed in.

Parameters: sensorPort

Acceptable Sensors for sensorPort:
SENSOR ports 1 through 4 (and your names for them given in Motors and Sensors Setup.)

untilTouch(sensorPort);

Command:

Until Functions:

This snippet of code will run the robot forward until the
touch sensor in sensor-port 1 is pressed, and then stop.
The default sensor port is S1 for untilTouch().

Usage without Parameters:

forward();
untilTouch();
stop();

Usage with Parameters:

forward(50);
untilTouch(S3);
stop();

This snippet of code will run the robot forward at half
speed until the touch sensor in sensor-port 3 is pressed,
and then stop.

Until Release
The robot continues what it was doing until the touch sensor is released out.

Parameters: sensorPort

Acceptable Sensors for sensorPort:
SENSOR ports 1 through 4 (and your names for them given in Motors and Sensors Setup.)

untilRelease(sensorPort);

Command:

This snippet of code will run the robot forward until the
touch sensor in sensor-port 1 is released, and then stop.
The default sensor port is S1 for untilRelease().

Usage without Parameters:

forward();
untilRelease();
stop();

Usage with Parameters:

forward(50);
untilRelease(S3);
stop();

This snippet of code will run the robot forward at half
speed until the touch sensor in sensor-port 3 is released,
and then stop.

ROBOTC Natural Language - NXT Reference:

ROBOTC Natural Language - NXT Reference • 11© 2010 Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Until Bump
The robot continues what it was doing until the touch sensor is pressed in and then released out.
 (A delay time in milliseconds can be specified as well.)

This snippet of code will run the robot forward until the
touch sensor in sensor-port 1 is pressed in and then
released out, and then stop. The default sensor port and
delay time are S1 and 10 for untilBump().

Parameters: sensorPort, delayTimeMS

Acceptable Sensors for sensorPort:
SENSOR ports 1 through 4 (and your names for them given in Motors and Sensors Setup.)

Valid Range Values for delayTimeMS:
0 to 3600000 and up.

untilBump(sensorPort, delayTimeMS);

Command:

Usage without Parameters:

forward();
untilBump();
stop();

Usage with Parameters:

forward(50);
untilBump(S3, 100);
stop();

This snippet of code will run the robot forward at half
speed until the touch sensor in sensor-port 3 is pressed in
and then released out (with a delay of 100ms), and then
stop.

Until Button Press
The robot continues what it was doing until a specified button on the NXT is pressed.

This snippet of code will run the robot forward until a
button on the NXT is pressed. The default button is
centerBtnNXT for untilBtnPress().

Parameters: lcdButton

Valid LCD Buttons for lcdButton:
centerBtnNXT - NXT orange center button
rightBtnNXT - NXT right button
leftBtnNXT - NXT left button

untilButtonPress(lcdButton);

Command:

Usage without Parameters:

forward();
untilButtonPress();
stop();

Usage with Parameters:

forward(50);
untilButtonPress(rightBtnNXT);
stop();

This snippet of code will run the robot forward at half
speed until the right button on the NXT is pressed.

ROBOTC Natural Language - NXT Reference:

ROBOTC Natural Language - NXT Reference • 12© 2010 Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Until Sonar Greater Than
The robot continues what it was doing until the sonar sensor reads a value greater than a set distance in centimeters.

This snippet of code will run the robot forward until
the sonar sensor in sensor-port 4 reads a value
greater than 30 centimeters, and then stop. The
default distance and sensor ports are 30 and S4 for
untilSonarGreaterThan().

Parameters: distance, sensorPort

Acceptable Values for distance:
0 to 647 (cm).

Acceptable Sensors for sensorPort:
SENSOR ports 1 through 4 (and your names for them given in Motors and Sensors Setup.)

untilSonarGreaterThan(distance, sensorPort);

Command:

Usage without Parameters:

forward();
untilSonarGreatherThan();
stop();

Usage with Parameters:

forward(50);
untilSonarGreatherThan(45, S2);
stop();

This snippet of code will run the robot forward at half
speed until the sonar sensor in sensor-port 2 reads a value
greater than 45 centimeters, and then stop.

Until Sonar Less Than
The robot continues what it was doing until the sonar sensor reads a value less than a set distance in centimeters.

This snippet of code will run the robot forward until the
sonar sensor in sensor-port 4 reads a value less than 30
centimeters, and then stop. The default distance and
sensor ports are 30 and S4 for untilSonarLessThan().

Parameters: distance, sensorPort

Acceptable Values for distance:
0 to 647 (cm).

Acceptable Sensors for sensorPort:
SENSOR ports 1 through 4 (and your names for them given in Motors and Sensors Setup.)

untilSonarLessThan(distance, sensorPort);

Command:

Usage without Parameters:

forward();
untilSonarLessThan();
stop();

Usage with Parameters:

forward(50);
untilSonarLessThan(45, S2);
stop();

This snippet of code will run the robot forward at half
speed until the sonar sensor in sensor-port 2 reads a value
less than 45 centimeters, and then stop.

ROBOTC Natural Language - NXT Reference:

ROBOTC Natural Language - NXT Reference • 13© 2010 Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Until Dark
The robot continues what it was doing until the line tracking sensor reads a value darker than a specified threshold.

This snippet of code will run the robot forward until the
light sensor in sensor-port 3 reads a value darker than 45,
and then stop. The default threshold and sensor port are
45 and S3 for untilDark().

Parameters: threshold, sensorPort

Valid Range Values for threshold:
(dark) 0 to 100 (light)

Acceptable Sensors for sensorPort:
SENSOR ports 1 through 4 (and your names for them given in Motors and Sensors Setup.)

untilDark(threshold, sensorPort);

Command:

Usage without Parameters:

forward();
untilDark();
stop();

Usage with Parameters:

forward(50);
untilDark(75, S1);
stop();

This snippet of code will run the robot forward at half
speed until the light sensor in sensor-port 1 reads a value
darker than 75, and then stop.

Until Light
The robot continues what it was doing until the line tracking sensor reads a value lighter than a specified threshold.

This snippet of code will run the robot forward until the
light sensor in sensor-port 3 reads a value lighter than 45,
and then stop. The default threshold and sensor port are
45 and S3 for untilDark().

Parameters: threshold, sensorPort

Valid Range Values for threshold:
(dark) 0 to 100 (light)

Acceptable Sensors for sensorPort:
SENSOR ports 1 through 4 (and your names for them given in Motors and Sensors Setup.)

untilLight(threshold, sensorPort);

Command:

Usage without Parameters:

forward();
untilLight();
stop();

Usage with Parameters:

forward(50);
untilLight(15, S1);
stop();

This snippet of code will run the robot forward at half
speed until the light sensor in sensor-port 1 reads a value
lighter than 15, and then stop.

ROBOTC Natural Language - NXT Reference:

ROBOTC Natural Language - NXT Reference • 14© 2010 Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Until Sound Greater Than
The robot continues what it was doing until the sound sensor reads a value greater than a set threshold level.

This snippet of code will run the robot forward until the
sound sensor in sensor-port 2 reads a value greater than
50, and then stop. The default threshold and sensor ports
are 50 and S2 for untilSoundGreaterThan().

Parameters: threshold, sensorPort

Acceptable Values for threshold:
(quiet) 0 to 100 (loud).

Acceptable Sensors for sensorPort:
SENSOR ports 1 through 4 (and your names for them given in Motors and Sensors Setup.)

untilSoundGreaterThan(threshold, sensorPort);

Command:

Usage without Parameters:

forward();
untilSoundGreatherThan();
stop();

Usage with Parameters:

forward(50);
untilSoundGreatherThan(85, S3);
stop();

This snippet of code will run the robot forward at half
speed until the sound sensor in sensor-port 3 reads a value
greater than (louder than) 85, and then stop.

Until Sound Less Than
The robot continues what it was doing until the sound sensor reads a value less than a set threshold level.

This snippet of code will run the robot forward until the
sound sensor in sensor-port 2 reads a value quieter than
50, and then stop. The default threshold and sensor ports
are 50 and S2 for untilSoundLessThan().

Parameters: distance, sensorPort

Acceptable Values for threshold:
(quiet) 0 to 100 (loud).

Acceptable Sensors for sensorPort:
SENSOR ports 1 through 4 (and your names for them given in Motors and Sensors Setup.)

untilSoundLessThan(threshold, sensorPort);

Command:

Usage without Parameters:

forward();
untilSoundLessThan();
stop();

Usage with Parameters:

forward(50);
untilSoundLessThan(15, S3);
stop();

This snippet of code will run the robot forward at half
speed until the sound sensor in sensor-port 3 reads a value
less than (quieter than) 15, and then stop.

ROBOTC Natural Language - NXT Reference:

ROBOTC Natural Language - NXT Reference • 15© 2010 Carnegie Mellon Robotics Academy / For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Until Rotations
The robot continues what it was doing until the motor encoder rotations reach the desired value.

This snippet of code will run the robot forward for 1.0
rotations using a built-in encoder on motor-port B, and
then stop. The default rotations and sensor port are 1.0
and motorB for untilRotations().

Parameters: rotations, sensorPort

Valid Range Values for rotations:
0.0 to 65000.0 and up.

Acceptable Sensors for sensorPort:
MOTOR ports A through C (and your names for them given in Motors and Sensors Setup.)

untilRotations(rotations, motorEncoderPort);

Command:

Usage without Parameters:

forward();
untilRotations();
stop();

Usage with Parameters:

forward(50);
untilRotations(2.75, motorA);
stop();

This snippet of code will run the robot forward at half
speed for 2.75 rotations using a built-in encoder on motor-
port A, and then stop.

Until Encoder Counts
The robot continues what it was doing until the motor encoder counts reach the desired value.

This snippet of code will run the robot forward for
360 encoder counts (1.0 rotations) using a built-in
encoder on motor-port B, and then stop. The default
rotations and sensor port are 360 and motorB for
untilEncoderCounts().

Parameters: counts, sensorPort

Valid Range Values for counts:
0 to 65000 and up.

Acceptable Sensors for sensorPort:
MOTOR ports A through C (and your names for them given in Motors and Sensors Setup.)

untilEncoderCounts(counts, sensorPort);

Command:

Usage without Parameters:

forward();
untilEncoderCounts();
stop();

Usage with Parameters:

forward(50);
untilEncoderCounts(990, motorA);
stop();

This snippet of code will run the robot forward at half
speed for 990 encoder counts (2.75 rotations) using a
built-in encoder on motor-port A, and then stop.

