ROBOTC.net Blog  

ROBOTC News

Archive for the ‘Student’ tag

A Teacher’s POV Blog Series

without comments

Teacher POVWe’ve had some wonderful teachers share their stories with us this year about their experience in the classroom teaching robotics. Read their stories here in our Teacher’s POV blog series.

Here are a few recent posts:

– International School Manila
– Palisades Middle School Robotics Initiative
– RVW VEX IQ Beltway
– First Year Teaching Automation and Robotics

Do you have a story to share about implementing STEM into your classroom, a cool project you did with your students/team, or advice about teaching robotics? If so, send us an email at socialmedia@robomatter.com and be a guest blogger for us. We would love to share your stories on our blog!

 

Written by Cara Friez

June 10th, 2015 at 11:34 am

Student POV: Droids Robotics

without comments

DroidsIn our newest edition of Student POV, we have Sanjay and Arvind Seshan, who are members of the robotics team, Not the Droids You Are Looking For (Droids Robotics) from Pittsburgh, PA, USA. They are actively involved in robotics all year around, whether competing themselves or teaching others. They constantly share some great pictures on their Twitter page of their team and outreach programs, so we’ve asked them to share some of their experiences in robotics …

—————————————————————————————————————————————————
Droids 01Our first exposure to robotics was in 2010 when we decided to visit a FIRST LEGO League tournament at the National Robotics Engineering Center (NREC). We were excited by what we saw and, the next summer, we purchased an NXT LEGO Mindstorms kit and learnt to program using Carnegie Mellon Robotics Academy’s NXT Video Trainer.

We haven’t stopped since! In 2011, we started our own neighborhood-based robotics team with eight other friends. We have participated in FIRST LEGO League as well as VEX IQ contests since then. You can read more about us on our team website (www.droidsrobotics.org).

Benefits of Robotics:

Droids 02Participating in robotics has taught us several programming languages, as well as general computer science skills and presentation skills. We now code in NXT-G, EV3-G, ROBOTC, Python and HTML as a direct result of robotics. We are comfortable interviewing experts as well as being interviewed about our work.

We use these skills outside of robotics contests to create webpages, and make online tools and programming tutorials. We even developed a robot in Minecraft that uses Python code to complete tasks. One sDroids 03ummer, we participated in a 24-hour coding contest called Code Extreme. For that event, we created a bicycle renting system using a Raspberry Pi and an RFID reader.

Robotics has taken us to some interesting places: the inside of a Smart House for seniors, under the hood of an airplane engine, and even to a sulfur dioxide sensor manufacturing plant. These field trips have shown us many different STEM careers we might choose from.

Spreading our love for robotics:

We do many robotics outreach activities all year round. We have been invited to teach other students at the Carnegie Science Center and four local libraries in the Pittsburgh area. At these events, we try to introduce students to LEGO Mindstorms, VEX IQ, EV3-G, and ROBOTC. Kids are naturally attracted to robots, and our hands-on workshops have been very popular. In September 2014, we expanded this outreach beyond Pittsburgh by teaching students around the world to program robots using our own lessons and website (EV3Lessons.com).

Challenges of Robotics:

The biggest challenge in robotics is probably robot reliability – getting your robot to “behave” as you intend again and again. It takes both software and hardware solutions in combination to improve reliability. To add to this problem, contest environments are often very different from practice environments. Kids who don’t have access to good programming lessons like the ones provided by ROBOTC, CS2N, Carnegie Mellon Robotics Academy’s EV3 Trainer, and EV3Lessons.com often feel frustrated.

Droids 04The challenges in robotics are not problems you cannot solve. They are part of what makes robotics interesting for us. They teach us to come up with different techniques as solutions. They also teach us patience and perseverance!

Overall, robotics has given us opportunities and skills that we might not have discovered otherwise. The greatest opportunity from robotics is finding out what all a robot can do! People some times think that a child’s robot “can only do so much”. We have found that it can lead to learning a lot of advanced programming techniques.

Robotics has opened up a world of possibilities for us. We especially like sharing these possibilities with other people we meet at our workshops and demos.

————————————————————————————————————————————————————————————————-
You can find more information about their team here: www.droidsrobotics.org and on their programming lessons here: www.ev3lessons.com.

Written by Cara Friez

March 24th, 2015 at 6:45 am

Expedition Atlantis for the iPad is Now FREE for a Limited Time!

with one comment

Flat Pad Mini MockupThe Robot Virtual Worlds team is proud to announce our iPad app, Expedition Atlantisis now FREE for a limited time from the Apple App Store!  

Expedition Atlantis immerses you in a world of underwater robotics exploration, where you must solve math problems to control your robot’s movement in the deep seas ruins.
 
 
 
 
 
 
 
 
 
btn_standards_rollThe math problems will help students understand proportional relationships and the basics of robot programming. It is designed for the student to learn as they play, and includes in-game tutorials to help them play along. As you play, you’ll be able to customize your robot, and also earn achievements through our Computer Science Student Network (CS2N). A full teacher’s guide for using Expedition Atlantis in the classroom is available at www.robotvirtualworlds.com/ipad.
 
 
 
btn_research_rollExpedition Atlantis was tested in a number of diverse classroom settings. In every case, students had measurable gains in proportional understanding, as well as increased interest in math and robotics. Read more about the research here!
 
 
 
 
 
Check out our gameplay video here …
 


 
As you play along with the app, please send us your feedback at support@robotvirtualworlds.com! We’d love to know what you think and any improvements we can make.

Download Today!!

 

Written by Cara Friez

October 6th, 2014 at 6:45 am

Sensor Section Available Now in our ROBOTC EV3 Curriculum!

without comments

Sensor SectionThe ROBOTC team is proud to announce the completion of the Sensing section of the Introduction to Programming EV3 Curriculum!

Check it out to learn how to use the EV3 Touch, Sonar, Gyro, and Color sensors with ROBOTC Graphical here! The curriculum is completely free to use, and more materials are always being added.

Check out two of the video tutorials below:
 
 


 

 

Written by Cara Friez

September 5th, 2014 at 3:34 pm

Curriculum Preview: Intro to Programming VEX IQ for ROBOTC!

without comments

header_splash_v2

We are excited to give you a preview into our newest curriculum series: The Introduction to Programming VEX IQ with ROBOTC. The website is still in-the-works, but it should be completely ready by August. The focus for this curriculum is on the VEX IQ virtual and/or physical robot and the ROBOTC 4.0 software featuring the new  graphical function. It consists of videos, PDFs, quizzes, and our famous easy to use step-by-step videos. Check out some of the videos of from our curriculum series …
 


 

 

 

The Introduction to Programming VEX IQ with ROBOTC is a curriculum module designed to teach core computer programming logic and reasoning skills using a robotics engineering context. It contains a sequence of projects (plus one capstone challenge) organized around key robotics and programming concepts.

Why should I use the Introduction to Programming EV3 Curriculum?

Introduction to Programming provides a structured sequence of programming activities in real-world project-based contexts. The projects are designed to get students thinking about the patterns and structure of not just robotics, but also programming and problem-solving more generally. By the end of the curriculum, students should be better thinkers, not just coders.

What are the Learning Objectives of the Introduction to Programming VEX IQ Curriculum?

  • Basic concepts of programming
    • Commands
    • Sequences of commands
  • Intermediate concepts of programming
    • Program Flow Model
    • Simple (Wait For) Sensor behaviors
    • Decision-Making Structures
    • Loops
    • Switches
  • Engineering practices
    • Building solutions to real-world problems
    • Problem-solving strategies
    • Teamwork

For more info and to see the online version of the curriculum, visit http://curriculum.cs2n.org/vexiq.

Written by Cara Friez

July 17th, 2014 at 7:45 am

Huffington Post Article Features CMU’s Robotics Academy!

without comments

huffpost_3lineAn article titled, “Robots Are Everywhere! Learning About Technology From Robotics” was recently published on the Huffington Post website featuring the Carnegie Mellon Robotics Academy! The author, Dr. Julie Dobrow from Tufts University, reached out to some of the staff at the Robotics Academy to get their take on robotics in the classroom. Here are some excerpts from the article …

 

 

The “Robotics Academy” at Carnegie Mellon University features a variety of tips for educators and parents on using robotics to teach kids about math, science, engineering and physics. Their extremely well-organized website offers curricular information, products and support to demonstrate ways to use both VEX systems (essentially a kit with all the component parts that enables kids to build a robot) and LEGOs to teach many STEM principles. All of their work and products are based on extensive research.

Robin Shoop, Director of the CMU Robotics Academy, believes that some of the work they are doing at CMU can make learning come alive. “Robots provide the hook that can be used to excite students about STEM academic concepts. Robotics activities in and of themselves will not improve STEM academic performance, but if robotics technologies are introduced correctly, and the STEM academic concepts are properly foregrounded, then robotics provides an excellent organizer to teach kids about STEM.”

Ross Higashi, lead curriculum developer at CMU says, “It’s a common misconception that involving robots in a curriculum or afterschool program makes STEM magic happen. That’s simply not true… Robotics presents a wealth of opportunities to teach meaningful content. But doing that, it’s not trivial. It’s hard work. You need well-targeted lessons, and you need a teacher who can support students who are learning by doing. In the end, though, as many students and teachers will tell you: it’s absolutely worth it, and the hardest fun they’ve ever had.”

And kids do have fun. And not only kids. Jason McKenna, a K-8 teacher in the Hopewell(PA) Area School District who works with the CMU Robotics Academy points out that it’s the combination of high engagement, the ability to teach each student at his or her instructional level and provide opportunities for differentiated engagement “that makes Robotics such fun for me as a teacher.”

 
You can read the entire article here.

Written by Cara Friez

July 11th, 2014 at 7:30 am

Robotics Summer of Learning Starts Next Week!!

without comments

Our Robotics Summer of Learning (RSOL) course opens this Sunday, June 15 with our first live webinar course starting on Monday, June 16! The RSOL gives students the opportunity to learn how to program robots using a free copy ROBOTC 4.0 (including the new Graphical Natural Language) for Robot Virtual Worlds programming software. If you’ve always thought that ROBOTC was too difficult, you should try out the new Graphical Natural Language, which is part of ROBOTC 4.0!

Sign up here!

Live Webinar Course Schedule:

  • June 16: Introduction to Software, Setup, Forums and Procedures used in this course.
  • June 17: Intro to Expedition Atlantis and Moving Forward
  • June 23: Turning and Intro to Ruins of Atlantis
  • June 30: Forward until Touch and Forward until Near
  • July 7th: Turn for Angle, Forward until Color, Intro to Palm Island
  • July 14th: Loops and if/else
  • July 21st: Repeated Decisions, Continuous Decisions, Intro to Operation Reset
  • July 28th: Joystick and Button control, intro to VEX IQ Highrise

All courses will be held at 1:00 PM Eastern Standard Time with a live instructor. A link will be available in the CS2N Moodle course for each session. All sessions are recorded so that you can take the course at your own pace. These dates are subject to change.

And don’t forget to sign up for our Robotics Summer of Learning Newsletter to get important reminders and information throughout the summer!

Student POV: Robovacuum

without comments

Alexis and Noah are back again with another Student POV! This time, sharing how they programmed a robovacuum in ROBOTC Graphical Language for the VEX IQ platform.

————————————————————————————
In this challenge, we programmed the Vex IQ robot to perform a task that was based off of the robotic vacuums that vacuum autonomously while avoiding obstacles. Our challenge was to program a robot that would perform like a robotic vacuum. Therefore it would be able to move autonomously while avoiding obstacles.

We started our program by putting in a repeat forever loop. This means that our program will continuously run until we stop it with the exit button on the Vex IQ brain.

RoboVacuum1

We then made a plan on what we needed our robot to do. Within the repeat loop, we had to put an “if else” statement. An if else statement is a command that makes a decision based on a condition. With our program, our condition is the bumper sensor. The robot checks the condition of whether or not the bumper sensor is depressed. If the bumper sensor is not depressed, it will run the command inside the curly braces of the if statement. If the bumper sensor is depressed, it will run the commands inside the brackets of the else statement. We had to put this statement inside a repeat forever loop because without it, it would only make this decision once.

RoboVacuum2

We then had to decide what task the robot was to perform when the sensor was depressed. So we set up commands within the curly braces of the else statement shown here.

RoboVacuum3

Below is an image of the final program.

RoboVacuum4

Now our robot is able to move around autonomously while avoiding different obstacles!

– Alexis and Noah

 
 

Robomatter Blog Ad VEX IQ

 

Written by Cara Friez

April 17th, 2014 at 8:30 am

Student POV: Slalom Challenge

without comments

It’s Danica and Jake, back again! This time, teaching people about the slalom challenge, in ROBOTC Graphical Language for the VEX IQ platform. The challenge is to line follow using the VEX IQ color sensor without hitting the “mines”, also known as the cups.

#5

In the graphical organizer, to line follow on the left side of the line, all you have to do is use the block, lineTrackLeft, to follow the right side you have to use lineTrackRight.

#1

In this block, there are 3 boxes, one for the threshold, the second for the speed of the left motor, and the last box is for the speed of the right motor. In this line of code, the threshold of 105, the robot’s left motor is set to go at 50% power, and the right motor is set to go at 15% power.

This block has to be included into a repeat loop to make sure the robot continues to do this command for an allotted amount of time.

#2

The repeatUntil loop has many options for how long the loop should run. For this challenge, we decided to use the timer.

#3

The timer is set at 7000 milliseconds or 7 seconds, so it has enough time to make it through the slalom. Our finished program looks like this:

#4

Now you can line follow in any challenge you would like, the possibilities are endless!

 
 

Robomatter Blog Ad VEX IQ

 

Written by Cara Friez

April 2nd, 2014 at 7:47 am

Student POV: Robo 500 Challenge

without comments

Hi, we’re Alexis and Noah, two eighth grade students at Hopewell Memorial Junior High School. Earlier this week, we did the Robo 500 challenge. To write the programs, we used the recently released ROBOTC Graphical software for the VEX IQ. The goal of the challenge was to complete two laps around a Vex IQ storage bin.

ROBO 500 picture

We completed the challenge by using timing and degree measurements. The first step was to get the robot to move forward. For this, we would use a basic motor command.

Photo 1

In ROBOTC Graphical, it gives you the option to choose the values in which you want your motor to run by, such as time and rotations. In this challenge, we chose time.

Photo 2

From there, we experimented with different time values until we found the timing that was needed to finish the side of the challenge before the turn. Through testing, I found that 3.7 seconds covered the distance needed.

Photo 3

Now, what was left was the largest challenge of the program, the turn. Timing a turn can be challenging on seconds alone. So, I used degree turns. I started with a 180 degree, which brought me around about 45°. Due to the drift of the robot when it moves forward, I had to make the turn slightly less than double the 180° turn. I settled on a value of 300°.

Photo 4

Once the values were established, the rest was just repeating the commands so the robot would go around the whole box. Here is an example of my final program.

Photo 5

We were then thinking about how the turns were a hassle with trial and error, and contemplated a better way to turn. So, we decided to use a gyro sensor to have the most accurate turns possible.

To start out the program we had to reset the gyro sensor so the sensor could record the degrees from zero.

Photo 6

From here we moved forward to the end of the course for time, and we moved forward for about four seconds. Then we used a while loop. A while loop is set to check a condition and while the condition is true, it performs what is inside of the curly braces of the while loop. In this case the condition is while the gyro sensor value is less than 90 degrees.

Photo 7

We would then repeat these actions until the robot has made two full laps around the course. Here is the program for one lap. To do two laps I would just repeat this program again.

Photo 8

We were able to finish our programs efficiently in a short amount of time due to the design of the new graphical programming. This new design enables you to drag over commands from the function library; such as, moving forwards and backwards, turning, and sensor commands while avoiding the hassle of painstakingly typing each command. This reduces the time spent on each program and allows us to speed up the pace at which we program, and we are able to complete challenges in a shorter amount of time.

Photo 9To the left, we have an image of the function library and a depiction of what would happen if you dragged a command into your program. The command would line up with the next available open line and would give you options as to what values you wanted to program your robot with.

————————————————————

If you’re a student who would like to contribute to the blog, let us know at socialmedia@robotc.net.

 
 

Robomatter Blog Ad VEX IQ

 

Written by Cara Friez

March 26th, 2014 at 7:30 am