Archive for the ‘Robot Virtual Worlds’ tag

New Robot Virtual World Level Packs Updates!

without comments

RVWThe Robot Virtual Worlds team has put out some updates to a few Level Packs to improve your experience. Download the latest versions today!

Written by Cara Friez

October 12th, 2015 at 8:13 am

Congratulations to the Joe Walker Vex Jets!

without comments

Congratulations to the Joe Walker Middle School Vex Jets, from the Westside Union School District in Quartz Hill, CA, for being selected as the grand prize winners in our Uncomplicate Your Classroom Video Contest!

The goal of the Vex Jets is to show teamwork, communication, and a big smile on your face when doing what you love. They take what they do very seriously and put hard work and sweat into every robot they build. There’s no doubt their attitude is what helps make them an award winning team!

Check out the great video they created about how they plan to use Robot Virtual Worlds to help their team:

The Joe Walker Vex Jets were established in 2011 by student, Justin Sowa, and teacher, Matt Anderson. This strong student-teacher team achieved 75th place in VEX World Championship in the “Gateway” game that year. In 2012, the Vex Jets continued their dominance and returned to the World Championships under the leadership of Kristy Bear, Cody White, and Joseph Nielson, where they took 69th place and won the World Championships Energy award! For the 2015-2016 school year, Amber Stricklen, Seth Torres-Beam, and Nassim Tavakoli will lead the team into battle, along with Noah DeHay as programmer, and Carson Davis as the driver.

In addition to competing, the Vex Jets have also helped start and mentor new high school and middle school teams all over the nation. And, this year, they’re helping start a team in Japan! The Vex Jets also work within their community to spread the word about the benefits or robotics and robotics competitions.

We’ll be checking in with the Joe Walker VEX Jets throughout the year so look for updates to see what these guys are up to. We’re excited to see what they do!

Congrats again and go Jets!


Written by LeeAnn Baronett

October 2nd, 2015 at 6:30 am

Posted in General News

Tagged with , , ,

Explore Robot Virtual Worlds with Free Access to Expedition Atlantis for the 2015 – 2016 School Year!

without comments

Over the last few weeks, we’ve talked a lot about Robot Virtual Worlds, a high-end simulation environment that enables students to learn programming, even if they don’t have access to a physical robot. If you’re still not sure whether or not Robot Virtual Worlds is right for your classroom, give it a try with a free version of Expedition Atlantis!

Chapter-1We’re happy to announce that we’ve extended our free version of Expedition Atlantis until July 1, 2016! That means that you can have free access to this classroom tested robot math game for the entire 2015 – 2016 school year!

With Expedition Atlantis, you can use a game-like environment to motivate students to learn about math and teach kids important proportional reasoning skills.


Research Tested, Classroom Approved

Expedition Atlantis is part of the Robot Algebra Project, an ongoing research and development project conducted by Carnegie Mellon’s Robotics Academy (CMU) and the University of Pittsburgh’s Learning Research and Development Center (LRDC). The goal of the Robot Algebra Project is to develop informal educational tools that effectively and significantly increase algebraic reasoning skills for middle-school age students.

Designed to enable teachers to foreground the mathematics in their robotics classrooms, Expedition Atlantis allows students to focus on learning mathematical strategies, without having to worry about the nuances of programming. You can learn more about the study that shows significant improvement in students’ proportional reasoning skills here.


Tools for Teachers and Their Classrooms

VRWe know that the majority of students guess and check their way through robot programming. Playing Expedition Atlantis is a classroom-proven method to teach kids the math that they need to program their robots! We are so convinced that it works that we include it in our free online VEX IQ and LEGO EV3 curriculum to help beginners learn behavior-based programming.

Expedition Atlantis includes an easy to follow Teacher’s Guide that guides step-by-step how to properly implement this game in your classroom.

You can download the latest version of Expedition Atlantis here:


Automatically Collect Students’ Progress  

BadgesYou can track your students’ progress in Expedition Atlantis (and all of our Robot Virtual Worlds) using CS2N’s Automated Assessment tools!

In Robot Virtual Worlds, students earn badges when they complete certain tasks or behaviors. By setting up a “group” in CS2N, teachers can setup courses and track all students’ progress as they work their way through a Robot Virtual World. To learn more about creating Groups and Generating Student accounts by going to: 


Your Next Classroom Adventure

Screenshot-2014-01-15_14.12.03Designed as a follow-up activity to Expedition Atlantis, Ruins of Atlantis reinforces behavior-based programming in a fun and meaningful way. While immersed in a scaffolded programming environment, students practice robot programming, using a full set of virtual motors and sensors on exciting new robots, 6000 meters below the surface of the ocean. Like Expedition Atlantis, Ruins of Atlantis also goes hand-in-hand, and is embedded within our free online VEX IQ and LEGO EV3 curriculum.


We Speak Your Language

Expedition Atlantis, Ruins of Atlantis, and all of our other Robot Virtual Worlds can be used directly with the ROBOTC programming environment. ROBOTC is a C-Based Programming Language with an easy-to-use development environment. It’s also the premiere robotics programming language for educational robotics and competitions.

Download a free, 14-day trial at:

Virtual-NXT-with-MenuUsing our Virtual Brick, you can also use Robot Virtual Worlds with the NXT-G, EV3, and LabVIEW software. NXT-G is a graphical, drag-and-drop style programming language that can be used with the LEGO NXT. EV3 is a graphical, drag-and-drop style programming language that can be used with the LEGO NXT
and EV3 robots.

To learn more about the Virtual Brick, visit:





Written by LeeAnn Baronett

September 16th, 2015 at 6:00 am

5 Reasons to Start a Robotics Competition Team

without comments

You may have seen our blog post from this past Friday on how to get a robotics competition team up and running but you may still be on the fence about whether or not to start a team.

Some of the benefits of robotics competition teams are the same as any extracurricular activity: social development, improving self-esteem, helping bolster a college application, giving kids a sense of belonging, etc. But, robotics competitions do even more. They inspire young people to pursue STEM careers, to be leaders in science and technology, and to be successful in the 21st century.

Here are just a few of the compelling reasons to start a robotics competition team:

Prepare students for the real world: In robotics competitions, students must work as a team to design, build, and program their own robot. Not only are students responsible for all aspects of project planning and preparing for the competition, if a robot breaks or malfunctions while competing, students must think on their feet and work together to come up with a solution. This teaches students what it’s like to work as a team to creatively solve problems under the pressure of a looming deadline.


Foster intense learning at all levels: If you’ve been part of a robotics competition team, you know that they’re anything but dull. Competitions immerse students in dynamic teamwork, creative challenges, technical problems, project planning, project management, time management, computational thinking, design thinking, and a whole lot of other stuff. As they work to apply the engineering process to real-world problems, students must figure out how to work within the parameters they’re given, but must also figure out how to be as creative as possible within those parameters.

This adds up to a whole lot of STEM and 21st century learning as students plan, adapt, iterate, improvise, prototype, design, and redesign their robots. And, since competition teams often travel, kids get the added bonus of meeting new people and traveling to new places, sometimes even internationally.


Get students interested in STEM: Did you know that three-quarters of the fastest growing occupations require significant mathematics or science preparation? And that by 2018, there could be 2.4 million unfilled STEM jobs in the U.S? And did you know that twenty-eight percent of US companies say that at least half of their new entry-level hires lack basic STEM literacy?*

There are more and more STEM jobs out there, but fewer and fewer candidates who are qualified to fill them. One way to stop this “STEM crisis” is to get more kids interested in pursuing STEM careers, and robotics competitions are a great way to do that. By using STEM skills and concepts to solve real-world problems, student get to apply their math and science skills in a fun and interesting way, and this can help spark students’ life-long interest in STEM.


There’s something fun for everyone: While building and programming your robot may be the team’s focus, there’s a lot more involved. Just like any IT company, the team also needs people who can design logos, create team merchandise, help with fundraising, track spending, coordinate and manage logistics, and all sorts of tasks that aren’t directly related to programming. This is a great way for kids to see how their skills can add value in a STEM-related field.


It’s a sport where everyone can turn pro: Unlike football, basketball, or even marching band, robotics is a field that provides each and every participant with a real chance to make it in the big leagues. Not only does being part of a competition team provide students with important real-world skills, competitions are also a great place to make industry connections, and they can also be a great way for kids to earn scholarships.


When you’re ready to start your competition team, remember that Robomatter has everything you need to get your team started. From hardware, software, free curriculum to help students learn to program, and training to help you get things up and running.


Don’t have the funding to start a full competition team? You can still start competing using our Robot Virtual Worlds software and our online competitions. These can be a great way to give kids the benefits of being part of a competition team, without making a significant investment in resources.

If you’re interested in starting a robotics competition team, be sure to tune into our Webinar on September 9th and 7:00 pm ET, Using ROBOTC and RVW to prepare for VEX Competitions. Visit to join.


Get an inside glimpse into what it’s like to run a robotics competition team. Check out this story from our Teacher POV blog series where Branden Hazlet, Director of Technology for Maui Prep, shares his team’s experience at the 2015 VEX Worlds Championship in Louisville, KY.


*Survey on CEOs Say Skills Gap Threatens U.S Economic Future, Dec 3, 2014



Written by LeeAnn Baronett

September 9th, 2015 at 6:22 am

Want to Start a Robotics Competition Team but Don’t Know Where to Start?

without comments

Starting a robotics competition team can seem overwhelming, but it’s not as scary as it seems. Here’s a high-level overview of what you need to do to get a team up and running:

  1. Choose a platform
    Now more than ever, robotics teams are faced with the important question of which platform they should purchase and use. LEGO and VEX are the two most widely used platforms. LEGO is primarily used for elementary through middle school (Ages 9 – 14), while VEX can be used for kids in elementary school through college (Ages 8 – 18+).Whether you choose LEGO or VEX, Robomatter has the resources you need to make your team successful, including hardware, software, free curriculum to help students learn to program, and training to help you get things up and running.
  2. Pick your equipment
    Once you’ve chosen a platform, the next step is to pick your equipment. Whether you’ve decided to go with VEX or with LEGO, Carnegie Mellon’s Robotics Academy has a great resources page to provide you with all of the tools and information you need to get started.You can access the VEX page here and the LEGO page here.
  3. Choose your software  
    ROBOTC is a C-based programming language with a Windows-based environment for writing and debugging programs. It’s also the most used language for the VEX IQ Challenge, and for the VEX Robotics Competition. ROBOTC is the only solution that offers a comprehensive, real time debugger. It also comes with a Graphical interface, which is a great way to get new students started.In addition to ROBOTC, you may also want to check out Robot Virtual Worlds, a high-end simulation environment that enables students to learn programming without a physical robot. With Robot Virtual Worlds, students can develop and test code on a simulated robot before running code on a real robot. They can also work on the robot when they’re at home, which means they don’t need to be in the classroom to prepare for the competition. With Robot Virtual Worlds, VEX users can also take part in online competitions.LEGO users can use Robot Virtual Worlds by adding on the Virtual Brick. By looking and acting like a LEGO Brain, the Virtual Brick allows teams to program virtual robots using the same programming language as they use to program real LEGO robots.
  4. Identify your technical and logistical requirements
    Here are some things you’ll need to think about:

    • Computers: You’ll want to have one computer for each robot/team of students.
    • Practice Area: The space should be large enough to accommodate the team, computer, practice table, and storage area for the robots.
    • Parts storage: To keep parts organized and accessible, parts organizers are a must. There are many options – portable organizers, drawer cabinets, boxes, caddies, etc. These are readily available online and at local hardware and craft stores.
    • Network – The software will need to be loaded on each computer or available via the network on each computer. Programs should be included in the regular system backup or a leader should make a backup to a separate disk or memory stick.
  5. Prepare a budget and get funding
    Your budget will need to take into account:

    • Robot kits and pats
    • Software
    • Parts organizers
    • Computers
    • Miscellaneous tools, parts, and supplies
    • Competition entry fees
    • Travel expenses, including gas, food, and lodging
    • Team shirts or other items to promote your team at the event

    Some potential sources of funding include your school district, local businesses, and local non-profit organizations. You may also consider having a fund raiser, like a bake sale or car wash. Be sure to acknowledge your sponsors at every opportunity, such as printing their names on your team shirts, etc.

  6. Build your team and assign rolesIn terms of team size, we’ve found that first-time coaches typically do well with about eight students. For larger teams, or if you have the resources, recruit other mentors for your team to lead the subgroups.Once you’ve built your team, the next step is to define roles. We recommend having students change roles on a regular basis, allowing them to share responsibility for all aspects of building, programming, etc. These are the roles we recommend:
    • Engineer (Builder)
    • Software Specialist (Programmer)
    • Information Specialist (Gets the necessary information for the team to move forward)
    • Project Manager (Whip-cracker)
  7. Plan, build, test, and iterate Once you have your equipment, funding, and team in place, you’re ready to get started!To make your team most effective, it’s a good idea to stick to a schedule. Create a schedule that fits your team’s objectives and resources. When you’re ready to build your robot, be sure to familiarize yourself with the competition rules and requirements. If you have questions, reach out to the community for help. There are a lot of great forums out there, such as the ROBOTC forum.Remember, an important part of the process is testing and iteration. Make sure your team knows it’s going to take time to get it right. Luckily, both the VEX and LEGO platforms allow teams to quickly build, test, iterate, and repeat. Even still, students may get frustrated by this process. Remind them that building, programming, and testing a robot doesn’t always go as planned. But, even though a design may have failed, it’s still a valuable learning opportunity, with lessons that can be applied to the next time you try.

If you’re interested in starting a robotics competition team, be sure to tune into our Webinar on September 9th and 7:00 pm ET, Using ROBOTC and RVW to prepare for VEX Competitions. Visit to join.



Written by LeeAnn Baronett

September 4th, 2015 at 6:30 am

Announcing the PLTW Uncomplicate Your Classroom Video Contest!

with 2 comments

Uncomplicate 2

We know you dedicate a lot to making sure your students have a great school year and we want you to have a great year, too. Show us how you plan to use the Robomatter PLTW Upgrade Pack to uncomplicate your classroom and you could win great prizes for you and your school!

Here’s how it works: Send us a short video about your PLTW robotics classroom or school and how you plan to use the PLTW Upgrade Pack to extend your students’ robotics experience. We’ll pick three finalists from all of the entries and let the community vote on who they think should win.

Entering the contest is easy. Just follow these three steps:

  1. Start by making sure you have a valid ROBOTC/PLTW 2015-2016 License ID. You’ll need this to submit your entry.
  2. Make your video: Show us how you think the upgrade pack can help you, your students, or your school. (Videos should be no longer than three minutes.)
  3. Submit your video by 11:59 EDT on September 20, 2015.

We’ll announce the three finalists on September 23rd. Voting will begin at noon ET on the 23rd and will continue until 11:59 pm ET on September 30th. Limit one vote per person, per day.

To learn more, visit :

Written by Cara Friez

August 17th, 2015 at 7:00 am

Uncomplicate Your Classroom with Robot Virtual Worlds!

without comments

Teach Faster Flexible

You’ve probably heard of Robot Virtual Worlds, a high-end simulation environment that enables students to learn programming, even if they don’t have direct access to a physical robot. But what are the benefits of Robot Virtual Worlds and how can you use it in your classroom?

Robot Virtual Worlds is a great tool for you, your students, and your classroom. Our infographic shows just a few of the ways Robot Virtual Worlds can help you uncomplicate your classroom by:

  • Helping you teach more efficiently with fewer resources
  • Lowering the cost of staring a robotics classroom
  • Managing students working at different levels
  • Keeping students engaged
  • Capturing authentic assessment and tracking individual student progress


Robot Virtual Worlds is not designed to replace your physical robots. Instead, it’s designed to help you enhance what you’re already doing in your classroom, and help you teach faster and more efficiently with fewer resources. Looking for ideas on how you can use Robot Virtual Worlds in your classroom? Here are just a few:

  • Have students use Robot Virtual Worlds to test their code before working with a physical robot
  • Use Robot Virtual Worlds to assign robotics homework
  • Use Robot Virtual Worlds to create your own virtual challenges
  • Use simulated fantasy worlds to capture students’ attention and make learning fun
  • Provide a virtual environment for robotics teams to learn to program

You can also check out these real-world stories from teachers who have used Robot Virtual Worlds in their classroom:

Palisades Middle School

Read about how Palisades Middle School is using Robot Virtual Worlds to teach 8th grade students how to build and program a robot through collaborative teamwork

Hopewell Area School District

Learn how a teacher in the Hopewell Area School District used Robot Virtual Worlds to challenge students to apply the basics of ROBOTC programming while also asking them to come up with unique strategies for solving an open-ended challenge

Want to learn more about using Robot Virtual Worlds in your classroom? Tune into our “Using Robot Virtual Worlds in the PLTW Classroom” webinar on Wednesday, September 9th at 7:00 pm EDT.


Written by Cara Friez

August 12th, 2015 at 9:28 pm

A Teacher’s POV: International School Manila

without comments

The Robot-arm mimics a real arm's motion

The Robot-arm mimics a real arm’s motion

My name is Ringo Dingrando and I teach Robotics and Physics at International School Manila in the Philippines.  For the past three years, high school students have been inquiring into how to program using ROBOTC and how to use their programming skills to build robots, often with VEX hardware.  In the classroom, most of my students learn the basics through some great online tutorial videos and by teaching each other.  They can then try their code out on virtual robots by using Robot Virtual Worlds software.  This code is then modified and put onto a physical robot that they build themselves.

Students were enthralled to see the 3D printer in action.

Students were enthralled to see the 3D printer in action.

This has led to quick progress in the classroom, but it is in our after-school Robotics Club where the benefits of this are becoming more visible. Students in the club needed a venue to showcase their creative robots, and so we developed Robolution.  This is a daylong event in which ISM students in elementary, middle, and high school are given the opportunity to showcase the creations they have been working on in the previous month.



We recently completed our second annual Robolution and the results were spectacular.  Some of the highlights included a life-size robot arm controlled in “Iron Man” style, an air-powered pong game, and a ping-pong launching device.  (Check out the video links!)  Design Tech students were wowing the audience by demonstrating the capabilities of one of our 3D printers.  Students in the middle school robotics program showed off their Lego Mindstorm robots with highlights such as a Rubik’s Cube solver, a spinner factory, and a stair-climber.  Elementary school students taught letters and numbers via Bee Bots and showcased their programming prowess through interactive Scratch games.


Robolution was a fantastic learning experience because it promoted programming, design thinking, and creativity.  Almost a thousand people in the ISM community were exposed to the awesomeness of robotics.  I fully expect that a year from now I’ll be sharing even more amazing results from our 3rd Annual Robolution.


Written by Cara Friez

April 30th, 2015 at 9:55 am

VEX Nothing But Net and VEX IQ Bank Shot Robot Virtual Worlds Available!

without comments

The Robot Virtual Worlds team is thrilled to announce the availability of two brand new virtual environments, the VEX Robotics Competition – Nothing But Net and VEX IQ Challenge – Bank Shot Robot Virtual Worlds. As in years past, these worlds were made available at the same time as their real world counterparts were unveiled at VEX Worlds!

The competitions for this year are both extremely exciting; teams will actually need to shoot balls into goals. The purpose of these virtual environments is to provide teams with an environment that allows for some strategic planning, and to act as a platform to start programming with the same kinds of motors and sensors that are available in the real world. To that end, we’ve added exciting new “Launchbots” that are capable of shooting balls across the field and are fully programmable with a full array of motors and sensors. One feature we’re really excited about is the “trajectory line”, which shows exactly where your shot will go based on the robots angle and motor power! Game scoring, timing, pre-loads, match loads, climbing, and other elements are all implemented, too.

Launchbot shooting a ball into the red net:

Nothing But Net

Check out our video of the VEX Robotics Competition – Nothing But Net RVW in action:

Launchbot IQ aiming a shot into the common goal:

Bank Shot

And here is footage from the VEX IQ Challenge – Bank Shot RVW:

To help you get started with these new Robot Virtual Worlds, we are providing a FREE summer license, available at: Our video-based VEX IQ Curriculum is also available completely for free to help you get started with programming.

Click here for more information on the VEX Robotics Competition – Nothing But Net Robot Virtual World, and here for the VEX IQ Challenge – Bank Shot Robot Virtual World.

Written by Jesse Flot

April 24th, 2015 at 10:05 am

A Teacher’s POV: Palisades Middle School Robotics Initiative

without comments


Training at Carnegie Robotics Academy

After last summer’s on-site training at Carnegie Mellon Robotics Academy, Palisades Middle School’s technology and computer teachers initiated semester STEM units featuring the VEX Cortex Clawbot, Robot Virtual Worlds software, and ROBOTC programming. 8th grade students now experience how to build and program a robot through collaborative teamwork.

In technology class groups of students learn about robotic systems and mechanics by building and remotely controlling a VEX Clawbot. In computer class students program the VEX Cortex Clawbot in a virtual, immersive environment using Robot Virtual Worlds software and through coursework provided by Carnegie Mellon Robotics Academy’s CS2N Moodle-based learning management system. By combining their knowledge and skills in groups, students will ultimately compete using autonomous and remote-control programming in a class competition called, “Tic Tech Toe”.


Julia, 8th grade middle school student

I attend Palisades Middle School and am in the 8th grade. I love how both our computer and technology class are combined. Being brand new to the whole experience of robotics, finding new ways to use technology educationally is something that really intrigues me. Currently I am in computer class and cannot compare it to anything else. Overall, the atmosphere and supportive people make this experience fun and worthwhile. It has introduced me to concepts that I didn’t even know were possible and are very educational. For example, I have recently learned to use a very cool program called ROBOTC. Basically, ROBOTC is a program which allows you to give your robot “tasks”. In my computer class we have been doing this quite a bit and I just love everything about it. Its a new and educational way for students to learn programming. My learning this at a young age really builds success for the future.

Lydia, 8th grade middle school student

Student-Created Simulated Field  Created in RVW Level Builder

Student-Created Simulated Field
Created in RVW Level Builder

Our technology and computer classes joined together while working on robotics. I really enjoyed being able to create and program robots. In our tech class each student was assigned a partner to build a robot and race it in a competition against fellow classmates. Our computer class involved robotic programming.We learned how to compile and download programs to a virtual robot and complete different challenges. This program was so much fun and I really enjoyed how we got to experience both “hands-on” and “hands-off” learning.

Making Robotics Real for Students

There is a real advantage in learning how to program in a virtual environment. Most programming courses offer 2-dimensional “Hello World” feedback. Robot Virtual Worlds gives students immediate 3-D feedback and opens their eyes to real-world programming applications. We have been pleasantly surprised with how students respond with interest to learning how to program when it’s presented in this context.

Robot Virtual Worlds also offers an engaging method of project-oriented learning involving challenges. Students don’t just program the robot to move, they learn what it would be like to manipulate a robot through various simulated environments. These environments called “worlds” could be a space mission, tropical island, or could even be student-designed obstacle field. These worlds have been effective in stimulating interest and maintaining learner engagement.

Palisades4In addition to the classroom experience, our first semester students also visited a local robotics company and learned first-hand how their robotics experiences have real-world relevance. Students were given the opportunity to see actual robots in development and other related technologies. This visit got the student’s attention, providing them with a better understanding of potential opportunities in engineering and programming.

We are anxious to continue this collaborative program. There was an initial investment in training, software, and hardware, but we feel that the return for the students is well worth it. In sharing our classes and resources, students are learning about information and machine technology in a unique way. We hope that this transfers over into their continuing studies and even future careers.