ROBOTC.net Blog  

ROBOTC News

Archive for the ‘Education’ tag

Troubleshooting Common Issues in ROBOTC

without comments

TroubleshootingEventually your classroom may run into issues with either the ROBOTC software, the robots, or both. The most important question that arises when this happens is ‘Where do I go for help?’ Fortunately, ROBOTC has you covered with an expansive support system designed to help all ROBOTC users get back on their programming feet as quickly and easily as possible. This blog post will take a look at some of the more common issues that you may run into and how to quickly resolve them.

“I am having trouble installing ROBOTC, and do not know why it will not install properly.”
ROBOTC installs like most other programs, but even so you may run into installation issues (depending on your classroom computers’ specific setup).  If you run into installation troubles, take a look through our ‘Getting Started’ guide on the ROBOTC wiki as it covers many of the common installation issues that classrooms in particular run into.

“I have installed ROBOTC but am running into issues activating my license.”
First, make sure your license has activations remaining by logging into the ROBOTC customer service page using your license ID and password. Next, check to see if your school’s IT department has recently reimaged the computers; if they have, the license information may have been deployed incorrectly and they will have to contact ROBOTC technical support (below).

“ROBOTC is installed and activated, but my computer will not connect to my robot/won’t load Virtual Worlds!”
There are a variety of reasons this could be occurring (depending on the computer’s set up and the specific robot platform being used), but normally these issue is solved by following the appropriate setup guide on the ROBOTC wiki (LEGO MINDSTORMS NXT, VEX IQ, and VEX Cortex). For the Robot Virtual Worlds software, double check to make sure the computer’s hardware meets or exceeds the minimum requirements as well.

RVW-Specs

“I have a different question or would like more information on these particular issues.”
There are several resources that can be used when troubleshooting a ROBOTC installation or physical robot issue.

  • Coding Problems and Questions – All coding questions should be forwarded to the ROBOTC forums, where the entire support staff may see and answer them.
  • Specific Commands, Functions, etc – The ROBOTC wiki is full of useful information including setup guides, programming tips, breakdowns of commands and functions, and more.
  • Technical Issues and Bug Reports – For any and all bugs and glitches you may run into, the ROBOTC support line (support@robotc.net) will be the best mode to contact the ROBOTC support team directly.

Written by John Watson

September 17th, 2013 at 2:22 pm

Differentiating Instruction in the Robotics Classroom

without comments

Main-DifferentiatedThe challenge for teachers in today’s educational environment is to teach student at their instructional level. Instead of creating an artificial level to instruct the entire class, teachers have to assess each student’s current level and create a plan to ensure that the student has academic growth from that beginning baseline. It’s best to think about this with an example. A sixth grade student has a reading comprehension at a 9th grade level at the beginning of the school year. The student takes assessments during the spring of that school year. When those assessments are scored, it shows that the student is reading at a 9th grade comprehension level. In the past, teachers and parents would be happy with that information, but the recent push towards differentiated instruction has forced educators to look at this information in a new light. What implications does this have for a robotics teacher?

IMG_1083Luckily, teaching robotics seamlessly fits into the demands of differentiated instruction. First, students are encouraged to come up with different solutions to problems. Whether it is a building challenge or a programming exercise, different students are going to come up with different solutions. Students are encouraged to do this in other disciplines also, but robotics is unique because it is so open-ended. There are only so many ways you can solve a math problem, but there is a myriad of different ways to program your robot to accomplish a task.

Secondly, students who are learning robotics are not forced to conform to an artificial ceiling. In another classroom, a teacher has to keep a student’s learning somewhat in line with the rest of the class. When teachers try to differentiate instruction, they create projects or assignments that are open-ended so students can explore those items as much as they can. However, when that assignment/project is completed, students are all brought back to the same point within the curriculum. Teaching robotics revolves around problem-based learning. IMG_2211Therefore, as the students learn how to solve a programming challenge with more sophisticated ROBOTC code, they are accelerating their knowledge both within that project and within the larger curriculum. While some students are mastering the fundamentals of programming their robot to move, other students can be incorporating more complex programming tools, like functions, into their programs. Robotics teachers can point students in the right direction so they can explore different and more intriguing programming concepts to apply to their challenges. It is not necessary that students memorize all of the different programming/building techniques, but that they know how to access the information when they need it. In this way, students are given the tools to create some ownership with their learning. That ownership, combined with the engagement of robotics helps to provide the true key to differentiation: high student interest.

Simply, if students are not interested in what they are doing, they will never develop the intrinsic motivation needed to push their learning. Students will work towards the minimum unless they are engaged and challenged. Teaching robotics provides the perfect platform to accomplish this goal and create a learning environment in which students are receiving individual acceleration and enrichment. Robotics is the perfect means to achieve the end of differentiated instruction.

- Jason McKenna

Written by Cara Friez

September 12th, 2013 at 2:30 pm

Setting Up Robots – VEX Edition

without comments

SettingUpVexNow that the physical robot kits are in the classroom and ROBOTC is installed and activated, you should be ready to build the physical robots for your classroom. One of the best features of a VEX Robotics kit is that they allow students to create a nearly limitless range of robots; the downside of this, however, is maintaining student-created robots in a classroom. To help with this, ROBOTC and the Video Trainer Curriculum support several standard models to help keep a baseline in the classroom.

Squarebot 4.0The first of such robots we will look at is the VEX Squarebot (using the VEX Cortex), one of the standard Cortex models that are used in the VEX Cortex Video Trainer for ROBOTC. The Squarebot utilizes three VEX motors (two for driving, one for the arm), and a wide variety of sensors. These sensors include Quadrature Shaft Encoders, a Sonar Sensor, and a Potentiometer (among others; in total, there are 8 separate sensors on the Squarebot). This model allows for a variety of tasks to be completed and is designed to work with all of the challenges in the ROBOTC Curriculum.

swerve

A smaller, different alternative Cortex standard robot is the Swervebot. Like the Squarebot, the Swervebot utilizes the VEX Cortex as its main processor and uses two VEX motors for driving. However, the Swervebot’s small chassis does not utilize an arm. Instead, the Swervebot makes clever use of an Omniwheel in the rear for turning and boasts three Line Follower sensors and a Gyroscope (as well as 6 other sensors, for a total of 10) and is perfect for smaller classroom environments.

VEXiq-047-300x230

Finally, the new VEX IQ platform can be quickly assembled and ready to use in a classroom thanks to the IQ Clawbot standard model. Using 4 motors total (two for driving, one for the arm movement, and one for gripper control), the VEX IQ Clawbot can be controlled either autonomously using the VEX IQ sensors (such as the Bumper Switch and Color Sensors), remotely using the IQ Controller, or a pleasant mix of both, depending on which kit is being used.

Visit CMU’s Robotics Academy VEX site for more information on the different kits available and to find build instructions.

 
 

Robomatter Blog Ad VEX

 

Written by Cara Friez

September 10th, 2013 at 2:40 pm

Setting Up Robots – LEGO Edition

without comments

SettingUpLEGONow that the physical robot kits are in the classroom and ROBOTC is installed and activated, you should be ready to build the physical robots for your classroom. One of the best features of a LEGO Mindstorms educational robotics kit is that they allow students to create a nearly limitless range of robots; the downside of this, however, is maintaining student-created robots in a classroom. To help with this, ROBOTC and their related Video Trainer Curriculum support several standard models to help keep a baseline in the classroom.

cutout_rem_gripper_T_300The first of such robots we will look at is the NXT REMbot (which stands for ‘Robotics Education Model), the standard NXT that is used in the ROBOTC Curriculum for TETRIX and LEGO MINDSTORMS. The REMbot utilizes three NXT motors (two for driving, one for the (optional) arm), a Light Sensor mounted below the robot, a Touch Sensor mounted in the front, a Sonar Sensor positioned above the robot, and a Sound Sensor on the side of the REMBot. This model allows for a variety of tasks to be completed and is designed to work with all of the challenges in the ROBOTC Curriculum.

mantis-cutout-300x275

If your classroom will be utilizing the TETRIX kit, the Mantis Robot standard model would be the build of choice. The Mantis Robot utilizes the TETRIX kit to add two TETRIX DC motors (for driving) and a TETRIX Servo (for the arm), as well as the respective motor and servo controllers; all of which are fully programmable in ROBOTC. Sensors can be added using any of the remaining sensor ports (one of which is used by the HiTechnic Motor/Servo controller chain).

Users of the MATRIX kits are not left in the dark however! MATRIX also has several options to use in the classroom, but the Quick Start Rover stands out from the pack. Combined with The Little Gripper, the MATRIX kits can be quickly and effectively set up for a standard robotics classroom. Like the TETRIX bots, the Quick Start Rover can be outfitted with NXT sensors on any of the remaining sensor ports for added versatility. It uses two MATRIX motors for movement and a MATRIX servo for The Little Gripper (all controlled through one MATRIX controller), all of which is fully programmable in ROBOTC.

Visit CMU’s Robotics Academy LEGO site for more information on the different kits available and to find build instructions.

 
 

Robomatter Blog Ad LEGO

 

Written by John Watson

September 10th, 2013 at 2:33 pm

Setting up ROBOTC and RVW for the Classroom

without comments

Setting-Up-ClassroomOnce the physical hardware (robotics kits) are secured for a classroom, the next step is to install the software (ROBOTC and Robot Virtual Worlds). It would be nearly impossible to cover every single specific setup that could be encountered on a classroom’s computers, but this blog post will cover the basic installation steps and some of the more common installation issues that educators may run into when installing ROBOTC in a classroom.

The first thing you will need to do is install ROBOTC on the computers in your classroom. To do this, always make sure to grab the latest version of ROBOTC that your license supports from the correct ROBOTC download page. If the wrong version is downloaded and installed, or if there is already a different up-to-date version of ROBOTC installed on the computers, you will not need to uninstall and reinstall the program; instead, you will simply need to activate your license in ROBOTC (more on this later). During the download process, ROBOTC will also attempt to install the necessary drivers for communications with physical robots. Depending on the level of security on the computers, you may need to get your IT department involved in order to ensure that the drivers are installed properly.

Activating_ManageOnce ROBOTC and the appropriate drivers have been installed, you will need to activate ROBOTC on each computer manually. The license activation ‘unlocks’ the ability to download code to either a physical robot or a Virtual World, depending on which license is used.  When ROBOTC is installed on a computer, all versions of ROBOTC (including different robotics platforms, such as the VEX and LEGO platforms, and different compiler options, such as Virtual Worlds compiler options) are installed at the same time. Instead of installing additional copies of the software  on the same computer (or opening a new program every time you would like to change the compiler target), the additional platforms and compiler options are ‘unlocked’ by activating their respective keys.

Before we move on to the next blog (Setting up the Robots), here a couple more tips that may come in handy when setting up ROBOTC in a classroom:

  • Depending on the programs, policies, and restrictions in place on the machines, your school’s IT department may need to be present for the installation or activation of ROBOTC, Virtual Worlds, or the installation of any drivers for the physical robots.
  • If your school’s IT department images and deploys the classroom’s computers, make sure they reference the ROBOTC Deployment Guide on the ROBOTC wiki for important help and information.
  • Make sure to check the computers’ hardware to the minimum requirements for ROBOTC or Robot Virtual Worlds before
  • Always test one computer first! If there is a problem with the installation, it is better to find out about it early and fix it before they same issue appears on a classroom full of computers.

- John Watson

Which Robotics Kit Should I Use? VEX Edition

without comments

VEXiq-109Now more than ever, robotics educators are faced with the important question of which kit they should purchase and use. This key question has been made even more intricate in the 2013-2014 school year due to the addition of the new robotics kits, VEX IQ kits. This article will help break down each VEX kit, their capabilities and target audiences, and allow you, the educator, to make an informed decision on which kit is best for your particular classroom.

The VEX IQ system is the brand-new robotics system from Innovation First International (IFI for short, makers of the VEX Robotics Design System). The VEX IQ can be used with any of the all-new hardware and sensors, including a unique plastic snap-fit structural system.

 

 

 

 

  • Sensors include a gyroscope, color sensor, potentiometer, touch LED, and ultrasonic sensor.
  • The base kits (either Sensor or Controller kits) are provided with over 650 structural components, 4 plug-and-play ‘smart motors’, at least 2 touch sensors (or more, depending on kit), and the VEX IQ microcontroller (more information on all available kits can be found here).
  • The IQ contains 12 smart ports that can be used to control either analog sensors, digital sensors, or servos/motors; the ports are non-typed and can be used to control any piece of VEX IQ compatible hardware that is plugged into it.
  • It also includes a micro-USB port for IQ-to-computer communication and a ‘tether’ port for direct connections to an VEX IQ Controller.
  • Debugging and programming information can be displayed on the backlit LCD information to increase ease-of-use in real time.
  • Wireless communication between the VEX IQ microcontroller and a VEX IQ controller is provided via a set of 900 MHz radio adapters.
  • The VEX IQ system will be fully legal in the new VEX IQ Challenge (designed specifically for the VEX IQ system), for students ages 8-14.
  • Recommended use: Middle School.

cortex-robotOne of the mainstays of the educational robotics world is the VEX Cortex platform. Originally released in 2010 by IFI, the Cortex can be used with the VEX Robotics Design System’s hardware and sensors.

  • Includes over 300 metal structural parts, 4 powerful DC motors, the VEX Cortex microcontroller, and a wide variety of fasteners, gears, and other miscellaneous hardware.
  • Sensors include touch sensors, an ultrasonic sensor, integrated motor encoders, line following sensors, and a potentiometer; additional sensors are available outside of the base kits.
  • Wireless communication between a VEX Cortex and a VEXNet Joystick Controller is possible by using the 802.11b/g VEXNet USB Adapter Keys.
  • The VEX Cortex system can be used in the VEX Robotics Challenge (Middle, High School, and College divisions).
  • Recommended use: advanced Middle School, High School or College.

We understand that choosing a robotics kit is a tough decision. The number one factor in determining which kit is right for you is the students; depending on the skill level of the students, it may be better to challenge them with a more advanced kit (VEX Cortex) or they made need to start with a simpler kit (VEX IQ.) No matter which kit you decide to use, though, you can rest easy knowing ROBOTC will fully support all of these platforms.


 
 
 

Robomatter Blog Ad VEX

 

Written by John Watson

August 27th, 2013 at 5:13 pm

Which Robotics Kit Should I Use? LEGO Edition

without comments

EV3-Cutout-01-copyNow more than ever, robotics educators are faced with the important question of which kit they should purchase and use. This key question has been made even more intricate in the 2013-2014 school year due to the addition of the new robotics kit, LEGO MINDSTORMS EV3. This article will help break down LEGO’s kits, their capabilities and target audiences, and allow you, the educator, to make an informed decision on which kit is best for your particular classroom.

The LEGO MINDSTORMS EV3 is the all-new robotics kit from LEGO Education (creators of the LEGO MINDSTORMS NXT system). It is fully compatible with previous NXT hardware (except for the battery), including all plastic structural pieces and sensors.

 

 

 

 

  • Compatibility with the MATRIX and TETRIX metal systems is expected in fall 2013.
  • Those starting a classroom from scratch need not worry; the EV3 comes with a total of 541 elements, including a multitude of structural parts (beams, connectors, wheels, gears, etc), 4 different sensor types (color sensor, gyroscopic sensor,  ultrasonic sensor, and touch sensor), 3 motors, and the EV3 micocontroller or ‘brain’.
  • The EV3 microcontroller sports 4 sensor ports, 4 motor ports, a internal Bluetooth adapter, and a USB slot which can be used with a WiFi adapter for wireless connectivity (as well as microSDHC card slot which supports cards up to 32GB in size).
  • It utilizes a Linux-based firmware which allows for on-brick programming and datalogging.
  • The EV3 will be legal in the 2013 First Lego League (ages 9-14) and the 2014-2015 First Tech Challenge (High School) competitions.
  • Recommended use: Middle School (EV3) or High School (with MATRIX or TETRIX kit).

Other-BUG-Robots

Now, let’s take a look at the LEGO MINDSTORMS NXT V2.0. Released in 2009, the NXT platform utilizes a plastic snap-fit hardware structure system, with 431 elements included in the base kit.

  • These elements consist of both structural pieces (beams, connectors, and axles, to name a few), three interactive servo motors, the NXT microcontroller, and ultrasonic, light, sound, and two touch sensors included.
  • There are also many third-party sensors available from sites such as Hitechnic, Dexter Industries, and Mindsensors.
  • The NXT is also fully compatible with the MATRIX and TETRIX metal systems.
  • Wireless capabilities include built-in Bluetooth and WiFi connectivity (provided by an external Samantha Module adapter).
  • The NXT is currently a legal microcontroller for both the First Lego League (FLL, ages 9-14) and First Tech Challenge (High School) challenges.
  • Recommended use: Middle School or High School (with MATRIX or TETRIX metal kit).

We understand that choosing a robotics kit is a tough decision. The number one factor in determining which kit is right for you will come down to the students; depending on the skill level of the students, it may be better to challenge them with a more advanced kit  (MATRIX or TETRIX kits) or they made need to start with a simpler kit (LEGO NXT or EV3 kits). No matter which kit you decide to use, though, you can rest easy knowing ROBOTC will fully support all of these platforms.


 
 

 
 

Robomatter Blog Ad LEGO

 

Written by John Watson

August 27th, 2013 at 5:09 pm

Organizing a Robotics Classroom

without comments

IMG_4201Getting your classroom organized for the beginning of the school year is an arduous task for even the most experienced teacher.  It can be even more demanding for those that teach robotics.  You’ve got the robot kits, you’ve been trained in ROBOTC, but how do you set up your class for the first day of school?  The goal of this article is to help answer the question for both new robotic teachers and teachers that have been teaching robotics for years.

As we all know, a robotics kit is more expensive than a textbook.  Moreover, because robotics kits contain so many small pieces, they can be much more difficult to take care of than a textbook.  As a result, keeping your kits organized is crucial.  If using a Lego Mindstorms or Tetrix robot, one way that I have found that can be very helpful is to name the NXT brick.  Then, give the same name to the kit. Now, assign the kit to the group of students in your class.  If the students know that over-tablethey are responsible for that kit, it goes a long way towards them acting more responsibly with the kit. If using a VEX robot, you won’t have the same ability to name your brick, but you can still able to label your robotics kit.

Which students are assigned to work together is also something that the teacher must put some thought into.  Once again, maintaining the kits is of the utmost importance.  Therefore, I am not going to allow students to work together if I feel that will not take care of the kit.  Some students are more organized and careful with the kits than others.  I always try to have one of those students in a group.  I try to have the kits named and assigned before the first day of school.  If I don’t know the students, then I may have to adjust the groups as we progress throughout the beginning of the school year.

IMG_3290

Once the kits are organized, the teacher can then start to think about how their curriculum items are going to be accessed and utilized.  A math teacher has a plan for when their students have a question about a topic, or when a student is confused about a particular concept.  A robotics teacher has to have the same type of plan in mind.  The beauty of teaching robotics lies in the fact that students are intrinsically motivated to find answers to their problems because they are highly engaged.  Some students will still be conditioned, however, to try to elicit the answer from the teacher instead of reasoning through a problem on their own.  Robotics teachers need to create a plan so the students can work towards being independent and productive problem solvers.

To that end, a good approach to a complex challenge is to examine what needs to be done before the challenge, during the challenge, and after the challenge is complete.  Before the challenge, students should be focusing on create flowcharts to organize their program and writing pseudocode to reflect those flowcharts.  During the challenge, students should focus on commenting their code and debugging techniques.  Afterwards, students should be afforded the opportunity to reflect and respond to what went well, what went not so well, and what they learned throughout the process.

DSC_0183

Giving students a little bit of structure while they engage a challenging task will go a long way towards ensuring that the students’ high level of engagement does not turn into a high level of frustration.  Engagement works both ways in that sense: High engagement leads to students that are focused on their task, but can also lead to high levels of frustration because the students desperately want to finish that task.  To avoid the frustration,teachers should provide a structure that the students can rely on when needed.  Before the school year begins, teachers should spend some time planning students’ work, and then the students can spend time during school working their plan.

The beginning of the school year is always a challenge.  As teachers, we understand that unforeseen difficulties will always arise.  However, going into the school year with as much planned and organized as possible helps us to focus on those unpredictable events that will undoubtedly occur.

Check out how we organize robot parts at the Carnegie Mellon Robotics Academy:


-Jason McKenna

Robothon – Beacons and Barriers Level Design

without comments

The robot marathon has started!  As the large autonomous vehicle drives down the empty street, it decides when and where to turn.  The bot navigates through the streets, using the dashed lines as guides.  There are a lot of potential wrong turns that it avoids as it rolls by houses and picnic tables.  Eventually, it drives under the banner at the finish line much to the programmer’s delight.

Did this happen in your town?  Maybe!  In fact it might be happening in your town right now because it’s not a physical robot – but a virtual robot driving through a virtual town!

 
Contest Overview

Beacons & Barriers competition imageThis is a game level created by Robotics Academy high school intern, Eddie, for the Beacons and Barriers level design competition.  Eddie used Autodesk Inventor to create some of the models and imported them into the Robot Virtual Worlds Level Builder.

The competition asks participants to create a level for RVW Level Builder, including Checkpoints and obstacles, through which players will navigate a robot.  In addition, participants must write instructions for the level.

How He Created the Level

Eddie used the design process discussed in the Computer Science Student Network’s (CS2N) course for level design called Create Your Own Level with RVW Level Builder.

brainstorm notes about level written with pen and paper

This process starts with brainstorming and research.  He jotted his notes on a piece of paper.  You’ll notice in the image that the drawings are not perfect, that some things were crossed out.  That’s perfectly fine – in fact – that’s what you want to do.

The process of jotting your ideas on paper allows you to see ideas.  If they aren’t good or they won’t work like you thought they might, then you can modify them or come up with ones that will work.  Notice how Eddie crossed out the first drawing with the curved road?  He realized that roads might be easier to construct if they were straight.

Eddie then mapped out his level – showing the start tile, finish tile, checkpoints, and obstacles (in this case: grass).  He then drew how the tiles should look.  Afterward, he modeled the tiles using Autodesk Inventor.  The Inventor Tutorials course on CS2N was helpful in showing him, step by step, how to create an object, export it and then import it into RVW Level Builder.

map drawn with pen and graph papertiles drawn with pen and graph paperscreenshot of road tile in Inventor

Once he made his level, Eddie tested it and wrote down ideas for ways to test it.  He then gave the level to a peer to test.  The test results proved that the level worked well and wasn’t too hard.

For the last phase, Eddie wrote the instructions for the level, zipped the level and the instructions into the same folder and submitted it to the competition.

How You Can Create Your Own Level

This was Eddie’s first time using the RVW Level Builder and he has had limited experience using Autodesk Inventor.  He learned how to use these programs by enrolling in free courses at www.cs2n.org.  You can too!  And since they are online, you can learn at your own pace

Check out the courses:

Introduction to Inventor – Learn the basics of Inventor.

portal for Create Your Own Level for Robot Virtual Worlds

Create Your Own Level with RVW Level Builder – From ideation to product release, learn how to create levels using the RVW Level Builder.

portal for Inventor Tutorials

Inventor Tutorials – Step by step instructions on creating an object in inventor and importing it into RVW Level Builder.

 

 

 

 

 

Once your level is complete, upload it to one of our level design competitions on CS2N.

Written by Luke Reynolds

August 16th, 2013 at 5:37 pm

Robotics Summer of Learning Competitions Ending Soon!

without comments

Robotics-Leaderboard copyOur inaugural Robotics Summer of Learning competitions are coming to a close on August 31! We have received some great entries, but there is still time to submit your programs for a chance at some awesome prizes.

There are three competitions eligible for prizes: CS2N VEX Toss Up Challenge, CS2N FTC “Ring It Up!” Challenge, and Robot Virtual Worlds Beacons and Barriers. Each competition is broken up into three divisions. Each player is eligible for only one prize per competition.

 
 
 
 
Divisions

  • Middle School Division – 6th to 8th Grade (for the 2013-2014 School Year)
  • High School Division – 9th to 12th Grade (for the 2013-2014 School Year)
  • Open Division – Teachers, Mentors, Coaches, Educators, Hobbyists, Everyone!

The prizes are top notch … we are giving away VEX IQ and NXT Kits; ROBOTC and Robot Virtual Worlds licenses; and two $1000 scholarships. Listed below are the official prizes:

Prizes

VEX Prizes FTC PrizesLevel Builder Prizes

The official rules are listed on the official Robotics Summer of Learning page.

You only have a few more days to enter for your chance at these awesome prizes, so sign up today!

Written by Cara Friez

August 15th, 2013 at 5:35 pm