Archive for the ‘Education’ tag

Summer STEM Activities and Resources

without comments

Summer STEM


Summer is here, and it’s a great time to take on some new and interesting STEM activities that are both educational and fun. There are a lot of STEM resources on the web, but here’s a quick summary of a few that we think are worth checking out:


  • SOL2016Carnegie Mellon CS-STEM Network Summer of Learning: The CS-STEM Summer of Learning program is an online outreach research project run by the Carnegie Mellon CS-STEM Network and University of Pittsburgh Learning and Research Development Center, in partnership with Robomatter, Inc. The program seeks to improve student preparedness in areas related to Computer Science, Computational Thinking, Science, Technology, Education, and Mathematics. Sign up today!


  • Makey Makey: MaKey MaKey is an invention kit for the 21st century. By allowing you to turn everyday objects into touchpads and combine them with the internet, beginners and experts to invent all sorts of things like, you know, a banana piano.


  • efk-logoEngineering For Kids: Engineering For Kids (EFK) brings science, technology, engineering, and math (STEM), to kids ages 4 to 14 in a fun and challenging way through classes, camps, clubs, and parties. With 145 locations around the world, it’s easy to find an EFK location near you!


  • Squishy Circuits: The goal of Squishy Circuits is to design tools and activities which allow kids of all ages to create circuits and explore electronics using play dough. The site guides you through creating conductive dough, creating insulating dough, and building some really cool circuits.


  • skew rev2 - CopyROBOTC Projects on Instructables: Instructables is a website specializing in user-created and uploaded do-it-yourself projects, which other users can comment on and rate for quality. Instructables has instructions for pretty much anything, but we’re sort of partial to the ROBOTC projects.


  • Expedition Atlantis iPad App: Playing Expedition Atlantis is a classroom-proven method to teach kids the math that they need to program their robots. Through its virtual robotics environment, Expedition Atlantis allows students to focus on learning mathematical strategies, without having to worry about the nuances of programming, like syntax and debugging. And, it’s available in an iPad App!




If you have a cool robotics or computer science project that you’re working on this summer, let us know! We’d love to feature you and your project in our Cool Projects blog. Drop us a line at:

Sign Up for a Summer LEGO Professional Development Course!

without comments

Professional Development Banner LEGO

Carnegie Mellon’s Robotics Academy has a great offering of certified technology training scheduled for LEGO this summer, both online and on-site in Pittsburgh, PA!

Register for one of their EV3 classes today!

Robotics Academy On-Site Training Includes:

  • Online access to supplemental lessons from Robotics Academy materials
  • Technical support for all hardware and software used in the class
  • 24/7 access to class management system, forums, and message boards (monitored daily)
  • Opportunities for Continuing Education credits and certificate of completion
  • Tour of the National Robotics Engineering Center

Benefits of Robotics Academy Online Training Courses:

  • Convenient online training gives you access from home or your school via the Internet.
  • Online access to supplemental lessons from other Robotics Academy materials.
  • Technical support for all hardware and software used in the class.
  • At the end of the course, take the certification test to become a Robotics Academy Certified Instructor.
  • Certificate of Completion upon course completion to apply for Continuing Education hours.
  • 24/7 access to class forums and message boards (monitored daily)

Robotics Academy ROBOTC for LEGO NXT and EV3 Certified Technology Training


This course focuses on learning how to program NXT and EV3-based robots using ROBOTC, and how to use robotics as an organizer to teach STEM (Science, Engineering, Technology, and Mathematics) concepts.

On-Site Course Dates:

June 27th – July 1st, 2016

Sign up for an on-site course here!

Online Course Date:

Jul 11th – 15th, 2016
Monday – Friday for 1 week
3 – 5pm EST (12 – 2pm PST)

Sign up for an online course here!




Written by Cara Friez-LeWinter

April 11th, 2016 at 6:00 am

Explore National Robotics Week with Robot Virtual Worlds

without comments


To help celebrate National Robotics Week, we’ve created a FREE, online version of our Robot Virtual Worlds software, which you can use in your classroom to teach students about robotics and introductory programming concepts.

For the week of April 4th (and the rest of April!) we’ve opened up a free, online version of our Ruins of Atlantis Robot Virtual World, as well as a number of other Robot Virtual World challenges.


We thought Atlantis was a myth. We were wrong.

ruins of atlantis screenshot with controlsExplore the Ruins of Atlantis, 6,000 meters below the surface of the ocean, collecting data and treasure as you do!

Ruins of Atlantis is one of our Robot Virtual Worlds, themed in a fantasy, underwater environment. It’s designed to teach and reinforce behavior-based programming in a fun and meaningful way. While immersed in a scaffolded programming environment, students practice robot programming, using a full set of virtual motors and sensors on exciting new robots, 6000 meters below the surface of the ocean.

The level design of Ruins of Atlantis features a path that includes collectible objects and additional starting points, making it ideal for teaching introductory programming concepts such as path planning and encoder based movements. Even though the robots in Atlantis do not resemble the real classroom robots, students can use the same programming languages (EV3, NXT-G, ROBOTC, etc.) to control them.

Visit our National Robotics Week website to get started!


More Robotics Fun!

In addition to Ruins of Atlantis, you can also access free, online versions of the following Robot Virtual Worlds Challenges:

  • Maze Challenge: This challenge features a sequence of turns that the robot must perform in order to get to the “end” of the maze. The robot must first begin at the starting point, and get to the goal area by completing turning and forward movement behaviors.
    maze challenge
  • Basic Movement 1 Programming: In this challenge, you will program your robot to pick up the three green cubes on the far side of the field and drop them into the green goal on the near side of the field, one at a time.
    basic movement 1
  • Basic Movement 2 Programming: In this challenge, you will program your robot to pick up one red cube, navigate to the red goal without bumping any of the walls, and drop the cube into the goal
    Basic movement 2

Visit our National Robotics Week website to learn more!


Robot Virtual Worlds + Research-Based Curriculum = Excellent STEM Education

STEMWith lots of research from the Carnegie Mellon Robotics Academy backing it up, Robot Virtual Worlds is a great tool to create a scaffold learning experience that teaches students important math, programming, proportional reasoning, and computational thinking skills. That’s we’ve built Robot Virtual Worlds into our STEM Curriculum.

Our curriculum does more than simply teach students basic facts and concepts. We teach students skills they need to be successful in the real world. Here are a few highlights:

  • Learner-centered instruction built on research that’s been proven in the real-world
  • Helps students develop 21st Century college and career readiness skills
  • Teaches important skills in foundational mathematics, engineering, programming, problem-solving, creative thinking, and computational thinking
  • Designed to provide structured problem-based learning that:
    • Provides guidance to both students and teachers
    • Scaffolds difficult concepts and complex tasks
    • Schedules class time closely so that no class time is wasted
    • Requires students to generalize their understanding and apply learning across contexts

To learn more about our curriculum, visit our website or send us an email at

Written by LeeAnn Baronett

April 4th, 2016 at 6:00 am

Cool Project: Tumblebug

with one comment

TumbleBugBlogDamien Kee, a VEX IQ and EV3 Super User, has created another cool project! This time he used one of his kids toys, the Tumble Bug Ball Drop, to test out how often the ball comes out of the left foot / right foot with a 50% probability. Damien says, “My boys got this toy for Christmas one year and I thought I’d put together a little device to check the probability of how it works. I used Ultrasonic Sensors with the EV3 and Colour Sensors (Proximity mode) with the IQ to keep track every time a ball went through the toy…. This would make a great experiment to run in class, not just with the Tumble Bug but all different types of kids toys.” We couldn’t agree more!

Damien used the VEX IQ and LEGO EV3 programmed in ROBOTC to run his tests. The programs figure out the percentage and display them on screen. Here is a full breakdown video of how the project was done …



Not only does this project allow for the practice of programming, but it gives the opportunity to assess variables when determining the results. Damien says: ”

What I love about doing these sort of extended investigations in class, is that rather than being a final conclusion, this now opens up a huge range of other questions and scenarios that you can test.

  • Why was there a difference?
  • Was the table level?
  • Do the different balls have an impact?
  • Does the placement speed in the mouth affect the results?”

Want to try it out yourself? Here are the code files Damien used:
EV3 RobotC –  EV3_tumblrbug.c
VEX IQ RobotC –  tumblrbug_VEX.c

To see the full hardware setup and find out the final results, check out his full blog here – Testing the Tumblebug (EV3 and VEX IQ)


Do you have a cool ROBOTC project you want to share with the world? If so, send us an email at and we’ll post it on our blog and social media pages!

Written by Cara Friez-LeWinter

March 2nd, 2016 at 6:00 am

Article: Robotic Competition Moves into Virtual World

without comments

AR-160119213The NWF Daily News in North West Florida published an article highlighting our Robot Virtual World competitions, focusing on our newest competition, the virtual Mini-Urban Challenge. The article talks about how our virtual competition is being used to help students test out their design before moving into the physical robotics competition. “Robomatter’s virtual world will test and exercise the Mini-Urban Challenge robots,” Steve Butler, the director of Doolittle Institute said. “The connection of our Mini-Urban ‘real world’ test environment to a bigger, simulated world will greatly enrich the experience of the participating students.”


Mini Urban Vs

To read the entire article, visit here – Robotic Competition Moves into Virtual World

To find out more about the Mini-Urban Challenge, visit their website here!

Written by Cara Friez-LeWinter

January 21st, 2016 at 10:24 am

PLTW Upgrade Pack – Now only $199!

without comments


The School Year is Well Under Way, But There’s Still Plenty of Time to Make the Most of Your Classroom with the PLTW Upgrade Pack. Now on sale for $199!

When you purchase the PLTW Upgrade Pack, you’ll get:

  • Robot Virtual Worlds
  • Access to the Graphical Natural Language Programming Interface
  • The ability to program VEX IQ robots
  • Access for 100 seats for the rest of the school year

Learn more here!

Written by Cara Friez-LeWinter

January 12th, 2016 at 1:19 pm

ROBOTC Certification Courses Being Offered at this Spring’s ITEEA Conference!

with 2 comments


Robomatter and the Carnegie Mellon Robotics Academy are proud to offer Robotics Certification courses at the ITEEA National Harbor conference in Washington, DC on March 2nd and 3rd, 2016!

When you sign up for the training, you’ll get:

  • A Carnegie Mellon Robotics Academy Certification course
  • Membership to ITEEA
  • Access to this year’s the ITEEA Conference at the National Harbor in Washington, D.C.

The courses that we are offering are Certification Courses. They will consist of two trainings sessions at the conference and four online classes after the conference. The online classes are offered once per week, are recorded, provide you with 24/7 access, and include forums that are enable you to get you questions answered on your schedule. There are two courses being offered, ROBOTC for LEGO training and ROBOTC for VEX training.

Each course will consist of:

  • Two (2) three-hour, on-site sessions at the ITEEA National Harbor conference
  • Four (4) additional online evening training sessions following the conference (or you could attend a summer online course)

Limited spots available! To register for the training or to learn more, visit:

Written by Cara Friez-LeWinter

December 1st, 2015 at 6:00 am

What’s the Big Idea? Using your STEM Classroom to Teach What Matters

with one comment

Computer Science

Computers are an everyday part of life. We use them constantly in our personal lives and in the workplace. According the the U.S. Bureau of Labor statistics, over 50% of jobs today require some level of technology skills. And, that percentage is expected to grow to almost 80% in the next ten years.

There’s no question that computer science skills are helping students succeed. But, computer science is about more than just learning to program. Students also need to learn how to think programmatically, to use programming as a problem-solving tool, and to understand the global impact of computer science and computing.

The most effective STEM programs include what are sometimes called the “Big Ideas” of computer science – foundational principles that are central to computing and help show students how computer science can change the world. Here’s a quick overview of some of the big ideas we think are important, and some tips on how you can incorporate them into your STEM Robotics or Computer Science classroom:

  1. Abstraction – Abstraction is a key problem-solving technique that we use in our everyday lives and that can be applied across disciplines and problems. Abstraction helps students manage complexity by reducing the information and details of a problem, allowing them to focus on the main idea. But how do you teach students abstraction?

One way is to Implement a project that start with a complex problem but uses mini-challenges to break the problem into smaller pieces. Have students solve the mini-challenges, focusing on one aspect of the problem at a time, and then use those mini-challenge solutions to build a final solution to the larger, more complex problem.

Algorithm2. Algorithms – Algorithms are used to develop and express computational problems and they’re an important part of Computer Science. But, algorithmic thinking is a tool that students can apply across disciplines and problems. Algorithmic thinking means defining a series of ordered steps you can take to solve a problem. Therefore, it’s important that students learn how to not only develop algorithms, but to also learn how to express algorithms in language, connect problems to algorithmic solutions, and evaluate algorithms effectively and analytically.

Here’s one idea for introducing algorithms into your STEM Robotics or Computer Science classroom: Provide students with a list of numbers. Ask them to find the largest number and document the procedure they used. (This is also good pseudocode practice!) Next, tell students that they will be given a program that generates 10 random numbers between 0 and 30 and they will have to provide an algorithm to find the largest number from the list. Once students have generated the algorithm and seen it in action, discuss why the algorithm is valuable. While it may not be a big deal to find the largest number out of a group of 10, what if we increased the range of numbers from 0 to 10,000, and increased the amount of numbers from 10 to 1000? In a situation like that, an algorithm would be able to find the largest number much faster than a human.

3. Computational Thinking – Computational thinking is a basic a problem-solving process that can be applied to any domain. This makes computational thinking an important skill for all students, and it’s why our curriculum is structured to teach students how to use computational thinking to be precise with their language, base their decisions on data, use a systematic way of thinking to recognize patterns and trends, and break down larger problems into smaller chunks that can be more easily solved.

To learn more about implementing computational thinking in your classroom, read our blog post from last month, “What is Computational Thinking and Why Should You Care?

Creativity4. Creativity – People often think that science and creativity are two terms that don’t belong together. However, that couldn’t be further from the truth. Innovation and creativity are at the heart of STEM and Computer Science. Along with programming skills, students need to learn how to think creatively and need to get comfortable with the creative process.

One great way to do this is by using structured problem-solving in your classroom. Structured problem-solving allows students to be creative, but within parameters. While students will still have opportunities to personalize their projects and justify their solutions, their creativity will still be structured. That way, teachers don’t have to worry about students constantly losing focus.

5. Data – This “Big Idea” revolves around the fact that data and information facilitate the creation of knowledge. Over the past 50 years, the tasks that we perform on a routine basis have gotten more and more complex. According to an analysis done by Frank Levy and Richard J. Murane, the amount that employees are asked to solve unstructured problems and acquire and make sense of new information has increased dramatically, by more than 40% .[i] Therefore, it’s important to teach students how to analyze and interpret data.

You can do this by having students use coordinate data to code precise movements. Or, ask students to design a short, school-appropriate survey to collect data and answer specific questions. Then, have students write a program to input and analyze their data and calculate basic descriptive statistics such as mean, mode, range, and frequency. You can also ask students to plot their data on a chart or graph, and identify subgroups within the dataset to explain response patterns. Finally ask students to draw conclusions or make generalizations from their data and present their results to the class.

2_2-4_mc_bossOnRoad6. Impact
– Computers have had a global impact on the way we think and live. The way we work, play, collaborate, communicate, and do business has changed dramatically in recent years and will likely continue to change. It’s important for students to understand the global impact of computing in everyday life, and the numerous ways computing helps enable innovation in other fields.

One way to help students understand the impact of computer science is to use activities that involve things like the internet, cybersecurity, internet searches, and the power of programming within advertising. You can also create activities that ask students to connect their programming skills to content from other classes (science, math, etc.). Or, you can ask students to think about and report on the less obvious ways they use technology every day, such as making breakfast, driving in a car, using the self-checkout line at the grocery store, etc.

7. Precision
– Programming is precise. It’s important for students to learn that a computer program will do exactly what they tell it to do. This is especially evident with robots. If you aren’t precise about what you tell your robots to do, they probably won’t do what you want. However, precision does not need to be complex. Even simple programming activities can require precise, thoughtful communication – How far should the robot move? How far should it turn?



Ultimately, we’re asking students to change the way they think about giving directions. So, a great activity is to have students create a set of instructions explaining how to do a task like following a recipe, drawing a house, or making a paper airplane. Have one student provide the instructions and a second student act as a robot, doing exactly what student #1 is telling him or her to do. Most times, it quickly becomes apparent that students have not fully considered the level of detail required for programming and that they need to be more precise with how they provide instructions.

If you’re looking for more ideas on how to integrate “Big Ideas” into your STEM classroom, we’ve embedded these “Big Ideas” into our research-based curriculum, which is available for free online, or through the purchase of a classroom edition that comes with the benefits of:

  • Guaranteed Uptime – Keep your classroom up, even if your internet is down.
  • Zero bandwidth requirements – 30 kids accessing the same curriculum can really slow things down.
  • High Quality Support – Have a question or need help getting started? You’ll have access to our best-in-class support team.
  • Individual curriculum access for each student or group – With individual access to the curriculum, students can move at the instructional pace that’s right for them.



Written by LeeAnn Baronett

November 11th, 2015 at 6:00 am

Cool Project: VEX IQ Game of Simon

without comments

Cool ProjectDamien Kee, a VEX IQ Super User, designed a really cool and creative Game of Simon using a VEX IQ Smart Brain, three Touch LEDs, and programmed with ROBOTC.  He says, “This is my version of the Game of Simon for the VEX IQ. The TouchLED’s are an awesome input/output device that is just so natural to use. Programmed in ROBOTC and designed to be used as a way of teaching / reinforcing the concepts of arrays, in less than 100 lines of code.”

Check out the video below that shows it in action …



For a more detailed breakdown of the code, visit his website here. Damien also is sharing his code for others to use, which you can download here! (He just asks that if you do use it, please acknowledge and forgive any errors.)

Do you have a cool ROBOTC project you want to share with the world? If so, send us an email at and we’ll post it on our blog and social media pages!

Written by Cara Friez-LeWinter

November 2nd, 2015 at 6:00 am

Competing for the Future: Developing a Life-Long Interest in STEM, Part II

without comments


Well designed competitions engage students in a range of activities, address academically challenging concepts, and teach important 21st century skills. But, these benefits don’t have to be limited to organized competitions. You can also get all of the benefits of a competition, right in your classroom!

Last week, Part I of our Competing for the Future blog talked about using virtual competitions, like our VEX Nothing But Net and VEX IQ Bank Shot Robot Virtual World Competitions, as a way for your team to compete virtually. This week, we explore how you can use virtual competitions in your classroom to provide a unique and challenging learning experience for all students!

RVW's VEX Nothing But Net

RVW’s VEX Nothing But Net

Step 1: Choose your competition type (simulation or fantasy)

The first step is to choose the type of competition you’d like to use in your classroom. Do you want to use a simulated competition, like the ones that they use in FIRST or the RECF competitions, do you want your competition to take place in a fantasy environment (underwater, outer space, on an island), or do you want to create your own competition?

Are you using LEGO or VEX?

LEGO and VEX are the two most widely used robotics competition platforms and there are great reasons to use both. The Robot Virtual Worlds team has a large selection of LEGO and VEX competitions for you to choose from:

RVW's LEGO Urban Challenge

RVW’s LEGO Urban Challenge

You can download each of these games from the Robot Virtual Worlds Download Center.

Palm Island Game

Palm Island Game

Another option is to use one of the Robot Virtual Worlds fantasy worlds. These worlds are more playful and have specific goals built into them. You can choose from:

  • Palm Island – Designed to teach and reinforce introductory and intermediate programming concepts involving sensor based robot movements.
  • Operation Reset – Programmers are assigned to recharge all of the Communication Towers in the colony of Alpha Base H99, a robotic crystal mining colony near the galactic center of the Milky Way.
  • Ruins of Atlantis – Designed to teach and reinforce introductory programming concepts such as path planning and encoder based movements.
Level Builder

Level Builder

Or, you can create your own competition using the Robot Virtual Worlds Level Builder and Model Importer. With an easy-to-use, drag-and-drop interface, the Level Builder makes it as easy to create a virtual challenge as it is to create a physical challenge out of classroom materials. The Level Builder provides a 12’x12′ square field on which to design your competition. It also provides several objects – from cans and boxes to line tracking tiles – that you can use to design challenging, unique, and fun competitions!

Model Importer

Model Importer

The Robot Virtual Worlds Level Builder also comes with a Model Importer that allows you to create and import your own 3D models! With the model importer, you can also modify objects to make them an unmovable object, a perilous obstacle, or a necessary checkpoint.

Step 2: Determine the rules of your competition

Regardless of whether you create your own competition or use an existing Robot Virtual World, the rules and structure of your competition will allow you to customize the experience for your class, or even for individual students. (This can also be something you discuss with your students and determine together.)

Here are a few things to consider:

  • When will the competition start?
  • Is this an individual competition, or can students work in teams?
  • What type of documentation do you want students to turn in?
    • Does the code need to be commented?
    • Do the programmers need to show pseudocode?
    • Do the programmers need to explain their use of variables and functions?
  • When does the competition end?
  • What does it take to win the competition?

Step 3: Get Ready

Once the rules are set, there are just a few more things to take care of before the competition starts:

  1. Start by installing Robot Virtual Worlds on all students’ machines. Visit our Download Center to get the latest version.
  2. If you’re using one of our Robot Virtual Worlds, such as Palm Island, Ruins of Atlantis, or Operation Reset, make sure you’ve installed that on the students’ machines as well. Visit our Download Center for the latest version of each Robot Virtual World.
  3. Make sure all students understand the competition rules
  4. Get ready to rumble and have fun! 

Need a Few Ideas for Using a Competition in Your Classroom?

With the ability to use an existing Robot Virtual World or create your own challenges, the options for in-class competitions are endless. Here are a few competition ideas if you need a little help deciding what to do:

  • Create a competition using the Palm Island Robot Virtual World by assigning points to the completion of certain tasks.
  • Create a competition that requires students to use a loop and the light/color sensor in a line tracking competition where students need to program their robots to follow a line as fast as possible. Here’s a Teachers POV blog post about the benefits of using this type of competition in your classroom, whether it’s with physical or virtual robots.
  • Robo-Slalom! Use the use the Robot Virtual Worlds Level Builder and Model Importer to create a slalom course that students must complete by programming a robot that can move along the outside of each flag. The robot’s path must prevent it from touching any flag, and allow it to cross the finish line as fast as possible.
  • You can also use a game like VEX IQ Beltway to create an in-class competition.
  • Here’s a Teacher POV blog post about how one teacher created a competition that challenged students to apply the basics of ROBOTC programming while also asking them to come up with unique strategies to try to score as many points as possible in a 2 minute game.

Written by LeeAnn Baronett

October 22nd, 2015 at 6:00 am