ROBOTC.net Blog  

ROBOTC News

Archive for the ‘Classroom’ tag

A Teacher’s POV: Getting Started with the VEX IQ

without comments

VEX-IQ-Carly-and-KarriThe VEX IQ robot is a great, new option for middle and high school robotics teachers. With anything new in the classroom, it’s important to have some ideas on how to best implement the new tools in the classroom.

There are some features of the VEX IQ system that teachers will notice initially. The VEX IQ brain has 12 identical ports. This means that any device (either a sensor or a motor) can be plugged into one of the ports. Also, the VEX IQ motors are smart motors; therefore, the motors can hold a position and resist external movements. Some of the sensors for the VEX IQ include a Bumper sensor, a Touch LED sensor, a Gyro Sensor, a Color sensor, and a Sonar sensor. One nice asset of the motors and sensors is the fact that they each have their own upgradeable firmware. As a result, if new features are added, the firmware for the device can be upgraded, as opposed to buying a new sensor and/or motor.

With the VEX IQ Starter Kit, there are over 850 structural and motion components. That many parts allow teachers and students lots of flexibility when it comes to building a robot. But, that’s only if they can find the parts they need. One of the first things that teachers need to do is get their kits organized. The Starter Kit comes with a storage bin and tray that help, but the amount of parts means that different pieces will need to be stored together in the storage bin. If the students know what pieces are located in each section of the storage bin, it will make the building process much easier.

VEX-IQ-JacobThe base robot for the VEX IQ is the Clawbot. The Clawbot include a gripper and a lifter arm. These features immediately grab the attention of most students; they love the idea of being able to lift and grab an object. For teachers, it is a good idea to build the Clawbot before allowing the students the opportunity to do the same. This gives teachers an idea of what problems the students may have as they begin building, and it also allows the teachers to help those students that run into problems. You can’t start anything until all the students have their robot built. Having some groups finish their robot, while other groups lag behind can be an issue. Building a robot first, puts the teacher in the best position to get everyone started off on the right foot.

When it comes time to start building, students can work on different parts of the VEX IQ Clawbot. You can divide the Clawbot into these sections: the Base, the Claw, the Tower, and the Ball Holder. One suggestion to organize a class would be to have two students work on the Base, while one student each works on the Claw, the Tower and the Ball Holder. Or, you could have one student work on each section. It’s important to note that however the class is organized for the building of the Clawbot, there should be a uniform way that the students attach the motors and sensors.

 


 

The battery for the VEX IQ robot brain comes charged, so a teacher does not need to worry about doing that preliminarily. So, once the Clawbot is built, the next thing that needs to be done is install the ROBOTC firmware and update the VEX IQ brain, motors, and any sensors that may be on the robot. Click here for directions on how to install the ROBOTC Firmware.

To update the VEX IQ brain, motors, and sensors, the VEX IQ Firmware Update Utility needs to be downloaded to your computer. The Firmware Update Utility and directions on how to utilize it can be found here.

With the next installment, we will take a look at how to set up your first programming lesson. In the meantime, teachers can take advantage of a few readily available resources at Carnegie Mellon’s Robotics Academy VEX Teacher Site and the ROBOTC Wiki to help with questions concerning programming the VEX IQ with ROBOTC.

-Jason McKenna

 
 

Robomatter Blog Ad VEX IQ

 

Written by Cara Friez

December 5th, 2013 at 4:43 pm

RVW FTC Block Party Competition Now Live!

without comments

Block Party CS2N ModeCarnegie Mellon’s Robotics Academy, a research-based organization committed to teaching students how to program robots, is really excited to be able to support FTC teams again this year. Follow the links below to learn about FREE Programming Classes and a new Block Party Programming Game that can be used by students, teachers in classrooms, coaches, or competition providers. The new game is designed to teach programming and has over $5,000 in prizes. We’ve also made CS2N Groups Technology that enables teachers, coaches, and regional competition sponsors to host their own competitions.

In the FTC Block Party Virtual World, program one of three robots to score as many points as possible in autonomous and driver controlled modes. Score points by:

  • Placing Blocks in Floor goals
  • Placing Blocks in Pendulum goals
  • Raising the Flag
  • Hanging from the Bar

See the rules documents for the full game explanation:

  1. FTC Block Party – Autonomous CS2N Mode
  2. FTC Block Party – Remote Control CS2N Mode

 

Additional information to help you get started:

How to Setup Your Own In-Class Competition – Teachers, coaches, and competition organizers can setup their own unique programming competitions using CS2N Groups Technology.  The Robotics Academy has developed groups technology that enables teachers to setup their own in-class competitions.  To learn how to setup your own Group competition click here: http://www.cs2n.org/tutorials/competitions

Be sure to visit the CS2N.org or RobotVirtualWorlds.com for the latest version of the FTC Block Party software. Happy Programming!

RVW VEX Toss Up Competition Now Live!

without comments

Toss-Up-CS2N-ModeCarnegie Mellon’s Robotics Academy, a research-based organization committed to teaching students how to program robots, is really excited to be able to support VEX Competition teams again this year. Follow the links below to learn about a NEW VEX Toss Up Programming Game that can be used by students, teachers in classrooms, coaches, or competition providers with FREE Programming Classes that your students can take. The new game is designed to teach programming and has over $5,000 in prizes. The Robotics Academy has also developed CS2N Group Technology that enables teachers, coaches, and regional competition sponsors to host their own programming and remote control virtual competitions.

VEX Toss Up is played on a 12′x12′ square field. The object of the game is to score your colored BuckyBalls and Large Balls into the Near Zone and Far Zone, by Locking Up your colored BuckyBalls and Large Balls into the Goals, and by Low Hanging, Hanging and Ultra Hanging off your colored Bar at the end of the match.

This Virtual World is designed to simulate the Toss Up competition field and several robot designs, allowing teams to practice their programming and form winning gameplay strategies.

See the rules documents for the full CS2N game explanation:

  1. VEX Toss Up – Autonomous CS2N Mode
  2. VEX Toss Up – Remote Control CS2N Mode

Additional information to help you get started:

How to Setup Your Own In-Class Competition – Teachers, coaches, and competition organizers can setup their own unique programming competitions using CS2N Groups Technology.  The Robotics Academy has developed group technology that enables teachers to setup their own in-class competitions.  To learn how to setup your own Group competition click here:http://www.cs2n.org/tutorials/competitions

Be sure to visit the CS2N.org or RobotVirtualWorlds.com for the latest version of the VEX Toss Up software. Happy Programming!

 

Robomatter Blog Ad VEX RVW

ROBOTC Assessment and Extension Activities

without comments

AssessmentThe ROBOTC Curriculum contains quizzes to help assess what students have learned, or for that matter, what they haven’t learned. However, as we discussed in a previous blog post, one of the great things about teaching ROBOTC is the ability to differentiate instruction to your students. This can present some issues when it comes to assessment. If a student is progressing quickly through the curriculum, he/she cannot have more assessments than another student. Students all have to be assessed equally. This then begs the question of how you can have the students move through the curriculum at different rates while still assessing them equally.

One of the ways I’ve been able to address this is through the use of rubrics, like the one below:

————————————————

Programming Rubric

The programmer uses Pseudocode within the comments to display a logical plan to solve the Mission.

Unsatisfactory - No Pseudocode included.

Satisfactory - Pseudocode is included but it does not display a logical plan to solve the mission.

Good - Pseudocode is included and it displays some logical thinking and something of a plan to solve the mission.

Exemplary – Pseudocode displays a logical plan to solve the mission. The plan is well thought out and clear.

The programmer is able to solve the Mission efficiently and repeatedly.

Unsatisfactory - Less than 70% of the mission is completed.

Satisfactory - Between 70 and 80% of the mission is completed.

Good - Between 80-90% of the mission is completed.

Exemplary - All of the mission is completed, and is able to be completed repeatedly.

Readability

Unsatisfactory - Code is hard to read and understand.

Satisfactory - Code is readable but is difficult to understand completely.

Good - Code is readable and understandable, but unclear is certain places.

Exemplary - The code is tabbed well and takes good advantage of white space in order to make it very easy to read.

Comments

Unsatisfactory - No Comments included.

Satisfactory - Basic Comments are included but some important parts of the code are not explained.

Good - All of the code is commented but explanations could be more complete.

Exemplary - All of the code is commented and the comments are thorough and comprehensive.

————————————————

The nice thing about this rubric is that the student does not have to complete the programming challenge in order to be assessed. Just like in any other class, students might not learn a concept to mastery on its initial presentation. You never want a student to reach their frustration level, so this gives the teacher an opportunity to clear up misconceptions while still assessing the student.

Another thing that a teacher can do is utilize Exit Slips. Once again, if students are working at different instructional paces, then the Exit Slips can general. You can ask questions like, “What part(s) of the programming challenge were you able to finish today?” This type of metacognition is valuable for students as they complete projects that last several days. Or, the exit slip can be a review of previously learned concepts. Either way, Exit Slips can play an important role in both teaching and assessing.

Fortunately for teachers, robotc.net contains a wealth of information for extension activities. The ROBOTC blog contains a section entitled “Cool ROBOTC Projects.” Here, there is a wealth of ideas that teachers can look at in order to create an interesting activity.

Moreover, the ROBOTC forum contains a section dedicated to projects. This can also be researched in order to find ideas or interesting projects for your class. Also, the forum can be used to ask questions as you begin to plan and implement a project. Here, you really get the best of both worlds: A wealth of ideas and choose from and a dedicated community willing to help you with those ideas.

Have a great school year!

Advanced ROBOTC and Robotics in the Classroom

without comments

robotc-code-2-copySo your class has gone through the ROBOTC Video Trainer Curriculum (VEX or LEGO), are comfortable programming in ROBOTC, and the robots are starting to zip across the room: however, some students are absorbing the programming knowledge quickly, while others are taking a little longer to grasp the core concepts. Where should a teacher look to if a student (or classroom) advances beyond the pace of the class? In this post, we will take a look at some of the many advanced programming resources available for ROBOTC.

Because ROBOTC is a C-based programming language, there are many C programming features that students can lean about and implement in their code. The first resource to investigate is the ‘Programming Tips and Tricks’ section of the ROBOTC wiki. This special subsection contains samples of some of the more advanced C-based operations that can be executed using ROBOTC and are pulled from a variety of sources. Topics include structs, switch statements, tertiary operators, and more. Because all of the information is available for free online, students can research and test the topics at their own pace and gain a deeper understanding of the subjects.

An example of an advanced program using a while loop as a counter

An example of an advanced program using a while loop as a counter

Next, you may want to take a look at tutorials on the ROBOTC wiki for implementing advanced programming concepts with different sensors. Also be sure to check out ROBOTC’s Sample Programs (via the ‘File -> Open Sample Programs’) as many of the programming concepts have pieces of advanced code that can help the students understand exactly how they are applied in real-world scenarios. There are also several multi-robot projects (for the NXT) that can be found on ROBOTC’s Multi-Robot wiki and a thread dedicated to advanced ROBOTC programming with VEX which will both offer unique challenges for students to conquer, as well as a wealth of community created projects showcased on the ‘Projects Discussion‘ section of the ROBOTC forums.

Once the students have sufficiently expanded their knowledge of advanced ROBOTC programming, they will be ready to tackle more complex robotics projects. This is a perfect opportunity to encourage creativity and inventiveness with preexisting challenges (and is a perfect example of where differentiated instructions can positively impact a classroom). By utilizing differentiated instruction in the classroom, you will be able to not only challenge the newer programmers with the basic programming examples, but will also be able to engage the more advanced students with complex programming options, such as making their robots perform a challenge quicker, more efficiently, or more accurately (or a mix of all three).


YouTube Direct Link 

- John Watson

Written by Cara Friez

September 24th, 2013 at 6:59 am

Handling Common Teaching Issues

without comments

TeacherI’ve always been of the opinion that teaching is an art, not a science. Therefore, it’s impossible to devise a scenario that will handle every issue. But, there are some common issues that arise for teachers as they teach robotics and ROBOTC.

Many students come into class familiar with different aspects of technology, but many students will be unfamiliar with some basic things. For example, never assume that students will know how to save a program while using ROBOTC. Secondly, never assume that the students will know where to save their programs. As a teacher, you need to have a plan to cover these things for students. Also, it would be helpful to have a reference for these things for the students. When students return from Christmas Break or a long weekend, sometimes these details escape them.

One things that is very important for teachers who work in classes in which the students are working cooperatively, is for the teachers to identify what is most important and to assess those things. Simply, students get better at things which are measured and assessed. For example, if you want students to use math vocabulary while solving a particular problem involving different wheel sizes, then you need to assess that. If students are working as a group to solve a problem, then each student’s role in that group needs to be defined and assessed.

IMG_2216Additionally, students working cooperatively in groups are always going to be an issue for teachers. The clearer the roles (and how those roles will be assessed) are defined for the students, the better chance you have for success. Still, teachers need to have a plan for those students who just don’t work well in groups. This plan needs to be articulated to the parents and to your administrators at the beginning of the school year.

One of the great things about teaching robotics and ROBOTC is that the first answer is hardly ever correct. This is great because the students are immersed in the problem-solving process. However, some students will become frustrated by this and immediately look to you for the answer. Teachers need to have a plan for these students. How can students work cooperatively to handle these issues? What has been done to prepare for the challenge? Is there a flow chart that the students can review for some ideas? Is there a sample program the students could examine? As teachers gain more experience working through the ROBOTC curriculum, they’ll be able to anticipate these situations more and have an answer for them.

IMG_2276The beginning of class and the end of class oftentimes determine the success, or failure, of a lesson. Teachers should always have a plan for the beginning of class to get the students settled and focused. The more structured this opening activity is, the better. If a routine is developed, the students will respond accordingly. If the students are coming to your class after gym class or lunch, for example, this opening structure will be very important. Examples of class openers could be having the students find errors in code, a review of particular concepts (what is the difference between = and ==), or an Abstraction Bridge.

In much the same way, the closure of the lesson should be used to judge the effectiveness of that day’s lesson. The most popular way to do this is with the use of an exit slip as the students leave the room.

Having a plan allows teachers to work that plan instead of getting frustrated with individual students. Planning your work, and then working your plan will help to allege some of the daily stressors that teachers face.

 
- Jason McKenna

Written by Cara Friez

September 19th, 2013 at 12:17 pm

Setting Up Robots – LEGO Edition

without comments

SettingUpLEGONow that the physical robot kits are in the classroom and ROBOTC is installed and activated, you should be ready to build the physical robots for your classroom. One of the best features of a LEGO Mindstorms educational robotics kit is that they allow students to create a nearly limitless range of robots; the downside of this, however, is maintaining student-created robots in a classroom. To help with this, ROBOTC and their related Video Trainer Curriculum support several standard models to help keep a baseline in the classroom.

cutout_rem_gripper_T_300The first of such robots we will look at is the NXT REMbot (which stands for ‘Robotics Education Model), the standard NXT that is used in the ROBOTC Curriculum for TETRIX and LEGO MINDSTORMS. The REMbot utilizes three NXT motors (two for driving, one for the (optional) arm), a Light Sensor mounted below the robot, a Touch Sensor mounted in the front, a Sonar Sensor positioned above the robot, and a Sound Sensor on the side of the REMBot. This model allows for a variety of tasks to be completed and is designed to work with all of the challenges in the ROBOTC Curriculum.

mantis-cutout-300x275

If your classroom will be utilizing the TETRIX kit, the Mantis Robot standard model would be the build of choice. The Mantis Robot utilizes the TETRIX kit to add two TETRIX DC motors (for driving) and a TETRIX Servo (for the arm), as well as the respective motor and servo controllers; all of which are fully programmable in ROBOTC. Sensors can be added using any of the remaining sensor ports (one of which is used by the HiTechnic Motor/Servo controller chain).

Users of the MATRIX kits are not left in the dark however! MATRIX also has several options to use in the classroom, but the Quick Start Rover stands out from the pack. Combined with The Little Gripper, the MATRIX kits can be quickly and effectively set up for a standard robotics classroom. Like the TETRIX bots, the Quick Start Rover can be outfitted with NXT sensors on any of the remaining sensor ports for added versatility. It uses two MATRIX motors for movement and a MATRIX servo for The Little Gripper (all controlled through one MATRIX controller), all of which is fully programmable in ROBOTC.

Visit CMU’s Robotics Academy LEGO site for more information on the different kits available and to find build instructions.

 
 

Robomatter Blog Ad LEGO

 

Written by John Watson

September 10th, 2013 at 2:33 pm

ROBOTC Curriculum Breakdown

without comments

ROBOTC-BreakdownA curriculum pacing guide is something that teachers have to consider whenever they examine their curriculum. This fact does not escape teachers of <a href=”http://www.robotc.net”>ROBOTC</a>. Whenever I come across teachers who are just starting to use the ROBOTC curriculum, often their first question revolves around how long the curriculum will take. Once again, teachers are used to having some type of pacing guide that delineates how a subject is to be taught. The ROBOTC curriculum is not organized in that fashion. Instead, the curriculum is organized by topic. The topics include basic programming fundamentals, robot movement, robot sensing, etc. The teacher is then free to spend an appropriate amount of time within each topic.

As teachers, this freedom is welcome. It is welcome because the pacing that comes with most textbooks is an impossible guide to follow. In order to create a true pacing guide, student background knowledge would have to be taken into account. Since every classroom is different (sometimes within the same grade, within the same school), it is impossible to gauge how quickly the students are going to master the concepts as they are presented. Screenshot-2013-09-05_15.11.12Additionally, as the teacher becomes more familiar with ROBOTC, they will find that they spend more time on particular concepts then they did the first time they taught the curriculum. For example, when I first taught ROBOTC, I spent 20 minutes discussing Flowcharts and Pseudocode. Experience has now taught me to spend a significant amount of time on these topics. I also spend much more time talking about Errors. Specifically, what should a student do when they get the dreaded compiler errors in their program? Experience has taught me to spend much more time on thinking about the logic of a program before the writing of ROBOTC and on debugging strategies once the code has been written.

Screenshot-2013-08-05_15.01.181Each of the aforementioned sections of the ROBOTC curriculum contains a programming challenge. The programming challenged is designed to showcase the skills that were emphasized in that section. Each section also contains an assortment of “mini challenges”. These challenges can be used at the teacher’s discretion. They all do not have to be completed. However, they can be very useful. For example, after the students have spent a day or two learning a topic, I will begin the following class with one of these mini challenges. They might not know all of the skills needed to complete the section challenge, but the mini challenge is a good assessment of what has been presented so far in that section. This also serves as a good change of pace for the class. Simply, you can’t learn to program without actually programming. In order to really understand the applications of while loops or if/else statements, students need to apply them. The mini challenges found within the ROBOTC curriculum serve as a great opportunity to scaffold skills toward their more challenging applications.

A beginning teacher of ROBOTC could teach the basic ROBOTC curriculum in one semester. By including many of the mini challenges, the curriculum can be stretched easily over a semester. I often tell teachers who are teaching the class for a year to do this, and then to end the year with a larger programming challenge. After the students have made it through the ROBOTC curriculum, I enjoy introducing them to Multi-Robot Communication. The sensor needed (NXTBee) is inexpensive, and there are a lot of great ideas for activities and programming challenges.

 


 

If you have a stronger background in computer science, and maybe you are teaching older students, you may be able to navigate through the curriculum much faster. What then do you do with students if you have them for an entire year? Luckily, there are many great ROBOTC projects on robotc.net. Moreover, the ROBOTC forum is also a wonderful place to look for ideas for projects, in-class competitions, and programming challenges.

Teaching robotics and ROBOTC is a lot of fun. The ability to watch your students apply what they learn in the ROBOTC curriculum in such engaging and open-ended activities is one of the main reasons why.

Setting up ROBOTC and RVW for the Classroom

without comments

Setting-Up-ClassroomOnce the physical hardware (robotics kits) are secured for a classroom, the next step is to install the software (ROBOTC and Robot Virtual Worlds). It would be nearly impossible to cover every single specific setup that could be encountered on a classroom’s computers, but this blog post will cover the basic installation steps and some of the more common installation issues that educators may run into when installing ROBOTC in a classroom.

The first thing you will need to do is install ROBOTC on the computers in your classroom. To do this, always make sure to grab the latest version of ROBOTC that your license supports from the correct ROBOTC download page. If the wrong version is downloaded and installed, or if there is already a different up-to-date version of ROBOTC installed on the computers, you will not need to uninstall and reinstall the program; instead, you will simply need to activate your license in ROBOTC (more on this later). During the download process, ROBOTC will also attempt to install the necessary drivers for communications with physical robots. Depending on the level of security on the computers, you may need to get your IT department involved in order to ensure that the drivers are installed properly.

Activating_ManageOnce ROBOTC and the appropriate drivers have been installed, you will need to activate ROBOTC on each computer manually. The license activation ‘unlocks’ the ability to download code to either a physical robot or a Virtual World, depending on which license is used.  When ROBOTC is installed on a computer, all versions of ROBOTC (including different robotics platforms, such as the VEX and LEGO platforms, and different compiler options, such as Virtual Worlds compiler options) are installed at the same time. Instead of installing additional copies of the software  on the same computer (or opening a new program every time you would like to change the compiler target), the additional platforms and compiler options are ‘unlocked’ by activating their respective keys.

Before we move on to the next blog (Setting up the Robots), here a couple more tips that may come in handy when setting up ROBOTC in a classroom:

  • Depending on the programs, policies, and restrictions in place on the machines, your school’s IT department may need to be present for the installation or activation of ROBOTC, Virtual Worlds, or the installation of any drivers for the physical robots.
  • If your school’s IT department images and deploys the classroom’s computers, make sure they reference the ROBOTC Deployment Guide on the ROBOTC wiki for important help and information.
  • Make sure to check the computers’ hardware to the minimum requirements for ROBOTC or Robot Virtual Worlds before
  • Always test one computer first! If there is a problem with the installation, it is better to find out about it early and fix it before they same issue appears on a classroom full of computers.

- John Watson

Reviewing ROBOTC Concepts After a Summer Off

without comments

There is a bevy of materials to help a teacher get started teaching the ROBOTC Curriculum. But what about the teacher that has made it through the curriculum and has a robotics class returning at the beginning of the school year? Whether that teacher is preparing to enter a robotics competition or is planning on creating a cool ROBOTC project, the teacher will still need to determine what the students have retained from the previous year.

Default-Objects-copyStudents that have made it through the ROBOTC curriculum should be able to use variables and functions in their programs. A great way to assess this would be to utilize the Robot Virtual Worlds. Students can spend the first week of school trying complete all of the missions within Operation Reset. Working with Operation Reset affords teachers the opportunity to differentiate this beginning diagnostic. Students that have retained more information can work independently, while those students that need more assistance can get the help they need. This is just another great application of Robot Virtual Worlds in the robotics classroom.

If Robot Virtual Worlds is not an option, you can apply the same concept with a physical robot. For students that are already proficient with ROBOTC, a good challenge to begin the year with would be the Chasm Detection.

 

chasm-detection

 

Another great tool that a teacher can utilize is the debugging of code. This can serve as a good one or two day review of ROBOTC syntax and logic. If a teacher is anxious to get started with a project and wants a quick review, this may be the way to go. One of the nice things about using code is the teacher can get some quick and individual feedback from the students. If time allows, a teacher may use one or two examples of code, see where the students are, and then design a challenge for them. Here is an example of code that the students could troubleshoot.

 

trouble-shooting-code

 

Hopefully this gives you some ideas of how you can reintroduce ROBOTC to your students. A seamless beginning to the school year will help with all of the projects and activities that you may have planned for the rest of the school year.

- Jason McKenna