ROBOTC.net Blog  

ROBOTC News

Archive for the ‘Classroom’ tag

Summer Teacher Trainings are Filling Up Quickly!

without comments

ban_eduProDev
 

Our on-site (in Pittsburgh, PA) and online Summer Professional Development classes for VEX CORTEX, VEX IQ, and LEGO MINDSTORMS are filling up quickly. Register today to make sure you get into your preferred course (listed below!)

Highlights of the Robotics Academy Training:

  • Acquire new skills with technology and new ways to teach STEM with robotics using innovative pedagogy!
  • No Prior Experience with Robotics or Programming required!
  • Hands-On Experience with 36 Contact Hours!
  • Learn directly from the curriculum and technology developers!

 

Here’s What People Are Saying After Our Trainings:

“You guys were fantastic! This was some of the most enjoyable and informative professional development I’ve ever attended. The instructor was incredibly knowledgeable and always willing to offer help when needed. I would recommend the Robotics Academy to any teacher that is wanting to get into robotics education.”

“I thought that just about every aspect of the sessions was valuable. As a person coming in with an almost zero knowledge base, I left feeling I had a strong sense of how things work and how I can immediately implement things in my classroom.”

“Instructors were great … this stands as one of the most enjoyable workshops/courses I have taken in a VERY long time. I learned a lot, I had a good time, I was challenged … what course could hope for a better outcome than this.”

 

Find out more at CMU Robotics Academy Professional Development!

———————————————————————————————————–

VEX and VEX IQ

ban_vexTeacherTraining
On-Site Classes:

ROBOTC for VEX CORTEX
July 6 – 10, 2015
July 27 – 31, 2015

ROBOTC for VEX IQ
June 22 – 26, 2015
July 13 – 17, 2015

Online Classes:

ROBOTC Online Training for VEX CORTEX
June 22 – 26, 2015
Monday-Friday for 1 week
3 – 5pm EDT (12 – 3pm PDT)

ROBOTC Online Training for VEX IQ
Jul 6 – 10, 2015
Monday-Friday for 1 week
3 – 5pm EDT (12 – 3pm PDT)

———————————————————————————————————–

LEGO

ban_legoTeacherTraining
On-Site Classes:

ROBOTC for LEGO
June 29 – July 3, 2015
July 20- 24, 2015

Online Classes:

ROBOTC Online Training for LEGO
Jul 13 – 17, 2015
Monday-Friday for 1 week
3 – 5pm EDT (12 – 3pm PDT)

Written by Cara Friez

May 8th, 2015 at 5:30 am

A Teacher’s POV: International School Manila

without comments

The Robot-arm mimics a real arm's motion

The Robot-arm mimics a real arm’s motion

My name is Ringo Dingrando and I teach Robotics and Physics at International School Manila in the Philippines.  For the past three years, high school students have been inquiring into how to program using ROBOTC and how to use their programming skills to build robots, often with VEX hardware.  In the classroom, most of my students learn the basics through some great online tutorial videos and by teaching each other.  They can then try their code out on virtual robots by using Robot Virtual Worlds software.  This code is then modified and put onto a physical robot that they build themselves.

Students were enthralled to see the 3D printer in action.

Students were enthralled to see the 3D printer in action.

This has led to quick progress in the classroom, but it is in our after-school Robotics Club where the benefits of this are becoming more visible. Students in the club needed a venue to showcase their creative robots, and so we developed Robolution.  This is a daylong event in which ISM students in elementary, middle, and high school are given the opportunity to showcase the creations they have been working on in the previous month.

 


 

We recently completed our second annual Robolution and the results were spectacular.  Some of the highlights included a life-size robot arm controlled in “Iron Man” style, an air-powered pong game, and a ping-pong launching device.  (Check out the video links!)  Design Tech students were wowing the audience by demonstrating the capabilities of one of our 3D printers.  Students in the middle school robotics program showed off their Lego Mindstorm robots with highlights such as a Rubik’s Cube solver, a spinner factory, and a stair-climber.  Elementary school students taught letters and numbers via Bee Bots and showcased their programming prowess through interactive Scratch games.


 

Robolution was a fantastic learning experience because it promoted programming, design thinking, and creativity.  Almost a thousand people in the ISM community were exposed to the awesomeness of robotics.  I fully expect that a year from now I’ll be sharing even more amazing results from our 3rd Annual Robolution.

 

Written by Cara Friez

April 30th, 2015 at 9:55 am

A Teacher’s POV: Palisades Middle School Robotics Initiative

without comments

Palisades1

Training at Carnegie Robotics Academy

After last summer’s on-site training at Carnegie Mellon Robotics Academy, Palisades Middle School’s technology and computer teachers initiated semester STEM units featuring the VEX Cortex Clawbot, Robot Virtual Worlds software, and ROBOTC programming. 8th grade students now experience how to build and program a robot through collaborative teamwork.

In technology class groups of students learn about robotic systems and mechanics by building and remotely controlling a VEX Clawbot. In computer class students program the VEX Cortex Clawbot in a virtual, immersive environment using Robot Virtual Worlds software and through coursework provided by Carnegie Mellon Robotics Academy’s CS2N Moodle-based learning management system. By combining their knowledge and skills in groups, students will ultimately compete using autonomous and remote-control programming in a class competition called, “Tic Tech Toe”.

Palisades2

Julia, 8th grade middle school student

I attend Palisades Middle School and am in the 8th grade. I love how both our computer and technology class are combined. Being brand new to the whole experience of robotics, finding new ways to use technology educationally is something that really intrigues me. Currently I am in computer class and cannot compare it to anything else. Overall, the atmosphere and supportive people make this experience fun and worthwhile. It has introduced me to concepts that I didn’t even know were possible and are very educational. For example, I have recently learned to use a very cool program called ROBOTC. Basically, ROBOTC is a program which allows you to give your robot “tasks”. In my computer class we have been doing this quite a bit and I just love everything about it. Its a new and educational way for students to learn programming. My learning this at a young age really builds success for the future.

Lydia, 8th grade middle school student

Student-Created Simulated Field  Created in RVW Level Builder

Student-Created Simulated Field
Created in RVW Level Builder

Our technology and computer classes joined together while working on robotics. I really enjoyed being able to create and program robots. In our tech class each student was assigned a partner to build a robot and race it in a competition against fellow classmates. Our computer class involved robotic programming.We learned how to compile and download programs to a virtual robot and complete different challenges. This program was so much fun and I really enjoyed how we got to experience both “hands-on” and “hands-off” learning.

Making Robotics Real for Students

There is a real advantage in learning how to program in a virtual environment. Most programming courses offer 2-dimensional “Hello World” feedback. Robot Virtual Worlds gives students immediate 3-D feedback and opens their eyes to real-world programming applications. We have been pleasantly surprised with how students respond with interest to learning how to program when it’s presented in this context.

Robot Virtual Worlds also offers an engaging method of project-oriented learning involving challenges. Students don’t just program the robot to move, they learn what it would be like to manipulate a robot through various simulated environments. These environments called “worlds” could be a space mission, tropical island, or could even be student-designed obstacle field. These worlds have been effective in stimulating interest and maintaining learner engagement.

Palisades4In addition to the classroom experience, our first semester students also visited a local robotics company and learned first-hand how their robotics experiences have real-world relevance. Students were given the opportunity to see actual robots in development and other related technologies. This visit got the student’s attention, providing them with a better understanding of potential opportunities in engineering and programming.

We are anxious to continue this collaborative program. There was an initial investment in training, software, and hardware, but we feel that the return for the students is well worth it. In sharing our classes and resources, students are learning about information and machine technology in a unique way. We hope that this transfers over into their continuing studies and even future careers.

A Teacher’s POV: RVW VEX IQ Beltway

without comments

Beltway2Jason McKenna, from the Hopewell Area School District outside of Pittsburgh, PA, writes about his experience in the classroom with the new Robot Virtual World game, VEX IQ Beltway. Check it out below …

——————————————————————————————————

The new VEX IQ virtual game Beltway is a great way to challenge your students to apply the basics of ROBOTC programming while also asking them to come up with unique strategies to try to score as many points in the 2 minute game as possible. My students just spent about 3 weeks working on the challenge and trying to score the highest score as possible. The students had an absolute blast and as a teacher, it was great seeing all the different ways the students tried to tackle this completely open-ended challenge.

Beltway4The objective in Beltway is the same as VEX IQ Highrise: program your VEX IQ robot to autonomously score as many cubes as possible during a 2 minute period. With Beltway, a conveyor belt has been added around the perimeter of the game field in order to assist with game play. Additionally, the virtual environment utilizes “magic stacking” meaning that the cubes automatically jump onto the stack when they are placed onto of the stacking cube regardless of the apparent size of the robot. The conveyor belt reduces the accumulation of error, where, for example, a robot’s slight error in one turn becomes a larger error when the robot repeats that same turn 4 or 5 times. Any time students attempt a long program with many different elements they will at some point become frustrated with the accumulation of error that occurs. Magic stacking and the large margin of error that enables easy pickup of cubes eliminates any frustration that the students may encounter as try to pick up cubes and then stack them. These elements of gameplay in Beltway allow students to focus on their strategy, and it also allows them to try to experiment with many different scoring methods because they are not spending a lot of time programming perfect 90 degree turns and aligning their robots perfectly to pick up a cube. You can click here for a more extensive list of rules and information about gameplay!

Beltway1Beltway comes with a variety of sample programs that students can use to help them get started or as a reference as they adjust their strategies. For example, if students decided that they wanted to control the conveyer belt manually, they could refer to a sample program to see how that is done. I did that many times while monitoring the students. After a few days, the students aren’t repeatedly raising their hands; instead, they just refer to the sample programs for guidance.

The game also served as a great tool to teach beginning programmers the utility of comments. Oftentimes, beginners don’t make programs quite as long as the ones they will make for Beltway. Students quickly saw the need to point out what was going on in their code with comments so they could go back to those sections and make whatever adjustments they wanted as they progressed with their gameplay.

As I stated earlier, my students had a lot of fun while playing Beltway. It is not easy to keep students’ interest level high in an activity that takes 3 weeks. The students maintained their level of interest and they consistently asked to stay after school to work on their programs some more. We had an in-class competition where the students ran their final programs. The winning team scored the winning points as the timer, literally, went to zero. It was pandemonium in my room. Kids were high-fiving each other, cheering, and remarking at how awesome the competition turned out. Students were also talking about the different strategies that the other teams used and how they could change their programs based upon what they had just seen.

Beltway3

So now, of course, the students want to play some more. This is great because now I can use that as an opportunity to show students how they can take some of the code that they used over and over again (for example, picking up cubes) and show them how they can use full ROBOTC to turn those behaviors into functions. Beltway has proven to be both a great teaching and learning tool in my classroom.

Click here to download the game!

- Jason McKenna

Teacher POV: ROBOTC – Starting in the Lower School Grades

with one comment

AC_logo_web200V1We came across a wonderful blog post, written by a faculty member at Allendale Columbia School in Rochester, NY, that talks about their transition to ROBOTC in their elementary classes.

While our 5th grade S.T.E.M. students at Allendale Columbia School were initially perplexed by some very new terminology, concepts, and programming requirements, it didn’t take long to see that our elementary grade students were up to the challenge of learning an industry-standard, text-based programming language typically taught at the high school and college levels: ROBOTC.

Just a couple of weeks before the start of school, we became inspired to teach ROBOTC programming after several local teachers and robotics coaches shared their concerns with us about the need for students to learn high level and industry-standard programming well before their high school years. Pondering this notion, it occurred to us that we could provide our young students the “familiar and scaffolded context” of reconstructing NXT robotic, challenging them to ultimately solve for the same exact missions our students originally and proficiently programmed in NXT in their fourth grade year, re-programming in ROBOTC, in the beginning of their fifth grade year.

As it turns out, our young students exceeded all expectations, easily grasping the new programing concepts, skills, and requirements for successfully completing the PBL (project-based learning) tasks and challenges they were able to solve for…

To read more from this blog, visit their blog here – Programming in RobotC – Starting in the Lower School Grades

Written by Cara Friez

November 25th, 2014 at 10:28 am

Expedition Atlantis for the iPad is Now FREE for a Limited Time!

with one comment

Flat Pad Mini MockupThe Robot Virtual Worlds team is proud to announce our iPad app, Expedition Atlantisis now FREE for a limited time from the Apple App Store!  

Expedition Atlantis immerses you in a world of underwater robotics exploration, where you must solve math problems to control your robot’s movement in the deep seas ruins.
 
 
 
 
 
 
 
 
 
btn_standards_rollThe math problems will help students understand proportional relationships and the basics of robot programming. It is designed for the student to learn as they play, and includes in-game tutorials to help them play along. As you play, you’ll be able to customize your robot, and also earn achievements through our Computer Science Student Network (CS2N). A full teacher’s guide for using Expedition Atlantis in the classroom is available at www.robotvirtualworlds.com/ipad.
 
 
 
btn_research_rollExpedition Atlantis was tested in a number of diverse classroom settings. In every case, students had measurable gains in proportional understanding, as well as increased interest in math and robotics. Read more about the research here!
 
 
 
 
 
Check out our gameplay video here …
 


 
As you play along with the app, please send us your feedback at support@robotvirtualworlds.com! We’d love to know what you think and any improvements we can make.

Download Today!!

 

Written by Cara Friez

October 6th, 2014 at 6:45 am

CMU Robotics Academy Professional Development Classes are Filling Up Quickly!

without comments

PD Blog

The ROBOTC Professional Development courses offered by Carnegie Mellon Robotics Academy are filling up quickly. Register today to make sure you get into your preferred course!

On-Site Training

Take one of our week long on-site courses in Pittsburgh, PA at the National Robotics Engineering Center (NREC). NREC is part of the Carnegie Mellon University Robotics Institute, a world-renowned robotics organization, where you’ll be surrounded by real-world robot research and commercialization.

ROBOTC for LEGO / TETRIX
July 7 – 11, 2014
July 28 – August 1, 2014

ROBOTC for VEX CORTEX
August 4 – 8, 2014

Online Training

Enjoy the convenience of taking Robotics Academy courses without leaving your own computer workstation with our online classes.

ROBOTC Online Training for TETRIX
July 21st – 25th, 2014
Monday – Friday for 1 Week
3-5:00pm EST (12-3:00pm PST)

ROBOTC Online Training for VEX CORTEX
July 28th – August 1st, 2014
Monday – Friday for 1 Week
3-5:00pm EST (12-3:00pm PST)

ROBOTC Online Training for VEX IQ
August 11th – 15th, 2014
Monday – Friday for 1 Week
3-5:00pm EST (12-3:00pm PST)

The Carnegie Mellon Robotics Academy’s Professional Development courses provide teachers and coaches with a solid foundation for robot programming in the respective languages, and experience in troubleshooting common student mistakes. It also focuses on identifying and extracting academic value from the naturally occurring STEM situations encountered in robotics explorations. All participants who complete the course will receive a Robotics Academy Certification. Find out more here – Robotics Academy Professional Development

Written by Cara Friez

June 2nd, 2014 at 11:15 am

Student POV: Robovacuum

without comments

Alexis and Noah are back again with another Student POV! This time, sharing how they programmed a robovacuum in ROBOTC Graphical Language for the VEX IQ platform.

————————————————————————————
In this challenge, we programmed the Vex IQ robot to perform a task that was based off of the robotic vacuums that vacuum autonomously while avoiding obstacles. Our challenge was to program a robot that would perform like a robotic vacuum. Therefore it would be able to move autonomously while avoiding obstacles.

We started our program by putting in a repeat forever loop. This means that our program will continuously run until we stop it with the exit button on the Vex IQ brain.

RoboVacuum1

We then made a plan on what we needed our robot to do. Within the repeat loop, we had to put an “if else” statement. An if else statement is a command that makes a decision based on a condition. With our program, our condition is the bumper sensor. The robot checks the condition of whether or not the bumper sensor is depressed. If the bumper sensor is not depressed, it will run the command inside the curly braces of the if statement. If the bumper sensor is depressed, it will run the commands inside the brackets of the else statement. We had to put this statement inside a repeat forever loop because without it, it would only make this decision once.

RoboVacuum2

We then had to decide what task the robot was to perform when the sensor was depressed. So we set up commands within the curly braces of the else statement shown here.

RoboVacuum3

Below is an image of the final program.

RoboVacuum4

Now our robot is able to move around autonomously while avoiding different obstacles!

– Alexis and Noah

 
 

Robomatter Blog Ad VEX IQ

 

Written by Cara Friez

April 17th, 2014 at 8:30 am

Student POV: Slalom Challenge

without comments

It’s Danica and Jake, back again! This time, teaching people about the slalom challenge, in ROBOTC Graphical Language for the VEX IQ platform. The challenge is to line follow using the VEX IQ color sensor without hitting the “mines”, also known as the cups.

#5

In the graphical organizer, to line follow on the left side of the line, all you have to do is use the block, lineTrackLeft, to follow the right side you have to use lineTrackRight.

#1

In this block, there are 3 boxes, one for the threshold, the second for the speed of the left motor, and the last box is for the speed of the right motor. In this line of code, the threshold of 105, the robot’s left motor is set to go at 50% power, and the right motor is set to go at 15% power.

This block has to be included into a repeat loop to make sure the robot continues to do this command for an allotted amount of time.

#2

The repeatUntil loop has many options for how long the loop should run. For this challenge, we decided to use the timer.

#3

The timer is set at 7000 milliseconds or 7 seconds, so it has enough time to make it through the slalom. Our finished program looks like this:

#4

Now you can line follow in any challenge you would like, the possibilities are endless!

 
 

Robomatter Blog Ad VEX IQ

 

Written by Cara Friez

April 2nd, 2014 at 7:47 am

Student POV: Robo 500 Challenge

without comments

Hi, we’re Alexis and Noah, two eighth grade students at Hopewell Memorial Junior High School. Earlier this week, we did the Robo 500 challenge. To write the programs, we used the recently released ROBOTC Graphical software for the VEX IQ. The goal of the challenge was to complete two laps around a Vex IQ storage bin.

ROBO 500 picture

We completed the challenge by using timing and degree measurements. The first step was to get the robot to move forward. For this, we would use a basic motor command.

Photo 1

In ROBOTC Graphical, it gives you the option to choose the values in which you want your motor to run by, such as time and rotations. In this challenge, we chose time.

Photo 2

From there, we experimented with different time values until we found the timing that was needed to finish the side of the challenge before the turn. Through testing, I found that 3.7 seconds covered the distance needed.

Photo 3

Now, what was left was the largest challenge of the program, the turn. Timing a turn can be challenging on seconds alone. So, I used degree turns. I started with a 180 degree, which brought me around about 45°. Due to the drift of the robot when it moves forward, I had to make the turn slightly less than double the 180° turn. I settled on a value of 300°.

Photo 4

Once the values were established, the rest was just repeating the commands so the robot would go around the whole box. Here is an example of my final program.

Photo 5

We were then thinking about how the turns were a hassle with trial and error, and contemplated a better way to turn. So, we decided to use a gyro sensor to have the most accurate turns possible.

To start out the program we had to reset the gyro sensor so the sensor could record the degrees from zero.

Photo 6

From here we moved forward to the end of the course for time, and we moved forward for about four seconds. Then we used a while loop. A while loop is set to check a condition and while the condition is true, it performs what is inside of the curly braces of the while loop. In this case the condition is while the gyro sensor value is less than 90 degrees.

Photo 7

We would then repeat these actions until the robot has made two full laps around the course. Here is the program for one lap. To do two laps I would just repeat this program again.

Photo 8

We were able to finish our programs efficiently in a short amount of time due to the design of the new graphical programming. This new design enables you to drag over commands from the function library; such as, moving forwards and backwards, turning, and sensor commands while avoiding the hassle of painstakingly typing each command. This reduces the time spent on each program and allows us to speed up the pace at which we program, and we are able to complete challenges in a shorter amount of time.

Photo 9To the left, we have an image of the function library and a depiction of what would happen if you dragged a command into your program. The command would line up with the next available open line and would give you options as to what values you wanted to program your robot with.

————————————————————

If you’re a student who would like to contribute to the blog, let us know at socialmedia@robotc.net.

 
 

Robomatter Blog Ad VEX IQ

 

Written by Cara Friez

March 26th, 2014 at 7:30 am