ROBOTC.net Blog  

ROBOTC News

Archive for the ‘STEM’ Category

Curriculum Preview: Intro to Programming VEX IQ for ROBOTC!

without comments

header_splash_v2

We are excited to give you a preview into our newest curriculum series: The Introduction to Programming VEX IQ with ROBOTC. The website is still in-the-works, but it should be completely ready by August. The focus for this curriculum is on the VEX IQ virtual and/or physical robot and the ROBOTC 4.0 software featuring the new  graphical function. It consists of videos, PDFs, quizzes, and our famous easy to use step-by-step videos. Check out some of the videos of from our curriculum series …
 


 

 

 

The Introduction to Programming VEX IQ with ROBOTC is a curriculum module designed to teach core computer programming logic and reasoning skills using a robotics engineering context. It contains a sequence of projects (plus one capstone challenge) organized around key robotics and programming concepts.

Why should I use the Introduction to Programming EV3 Curriculum?

Introduction to Programming provides a structured sequence of programming activities in real-world project-based contexts. The projects are designed to get students thinking about the patterns and structure of not just robotics, but also programming and problem-solving more generally. By the end of the curriculum, students should be better thinkers, not just coders.

What are the Learning Objectives of the Introduction to Programming VEX IQ Curriculum?

  • Basic concepts of programming
    • Commands
    • Sequences of commands
  • Intermediate concepts of programming
    • Program Flow Model
    • Simple (Wait For) Sensor behaviors
    • Decision-Making Structures
    • Loops
    • Switches
  • Engineering practices
    • Building solutions to real-world problems
    • Problem-solving strategies
    • Teamwork

For more info and to see the online version of the curriculum, visit http://curriculum.cs2n.org/vexiq.

Written by Cara Friez

July 17th, 2014 at 7:45 am

Huffington Post Article Features CMU’s Robotics Academy!

without comments

huffpost_3lineAn article titled, “Robots Are Everywhere! Learning About Technology From Robotics” was recently published on the Huffington Post website featuring the Carnegie Mellon Robotics Academy! The author, Dr. Julie Dobrow from Tufts University, reached out to some of the staff at the Robotics Academy to get their take on robotics in the classroom. Here are some excerpts from the article …

 

 

The “Robotics Academy” at Carnegie Mellon University features a variety of tips for educators and parents on using robotics to teach kids about math, science, engineering and physics. Their extremely well-organized website offers curricular information, products and support to demonstrate ways to use both VEX systems (essentially a kit with all the component parts that enables kids to build a robot) and LEGOs to teach many STEM principles. All of their work and products are based on extensive research.

Robin Shoop, Director of the CMU Robotics Academy, believes that some of the work they are doing at CMU can make learning come alive. “Robots provide the hook that can be used to excite students about STEM academic concepts. Robotics activities in and of themselves will not improve STEM academic performance, but if robotics technologies are introduced correctly, and the STEM academic concepts are properly foregrounded, then robotics provides an excellent organizer to teach kids about STEM.”

Ross Higashi, lead curriculum developer at CMU says, “It’s a common misconception that involving robots in a curriculum or afterschool program makes STEM magic happen. That’s simply not true… Robotics presents a wealth of opportunities to teach meaningful content. But doing that, it’s not trivial. It’s hard work. You need well-targeted lessons, and you need a teacher who can support students who are learning by doing. In the end, though, as many students and teachers will tell you: it’s absolutely worth it, and the hardest fun they’ve ever had.”

And kids do have fun. And not only kids. Jason McKenna, a K-8 teacher in the Hopewell(PA) Area School District who works with the CMU Robotics Academy points out that it’s the combination of high engagement, the ability to teach each student at his or her instructional level and provide opportunities for differentiated engagement “that makes Robotics such fun for me as a teacher.”

 
You can read the entire article here.

Written by Cara Friez

July 11th, 2014 at 7:30 am

ROBOTC at the China International Robotic Show

without comments

China ROBOTC 006The China ROBOTC team sent us some great photos from the China International Robotic Show in Shanghai, which they’ll be at from July 9-11. We will update the photos here and on our Facebook page as we get them from the weekend!

 

 

 

 

Written by Cara Friez

July 9th, 2014 at 4:49 pm

Sign up for the Robotics Summer of Learning All Summer!

without comments

Fun RSOL

Did you know that you can sign up for the Robotics Summer of Learning anytime during the summer? All our live webinars are recorded, so you can easily sign up today and work at your own pace!

FAQ

 


How do I join and get into the class?
Sign in or sign up for a new account at CS2N.org. Then visit http://cs2n.org/summer-of-learning and click on the VEX IQ robot. You’ll be taken to a new page where you will click “View” under “Summer of Learning 2014 – VEX IQ – Intro.” From there you will be in the official Summer of Learning course!

How much does this course and/or software cost?
Nothing at all! It is free until September 1, 2014.

What do I need to download?
ROBOTC and the VEX IQ Challenge Pack. You need to download both items. The License ID and Password is located in the CS2N Moodle Course. Use these to activate the license for the entire summer (through September 1st). Computer Minimum Requirements.

Where can I find the link for the live classes?
The link is at the top of the section for the topic of that class. For example, if the topic for the live class is turning, the link will be at the top of the basic movement section. This is also where you will find the recording after the live class has ended.

What is the class schedule?
The live class schedule is listed below, but remember that you can work throughout the summer at your own pace. All classes are recorded. Just keep in mind that if you work ahead, some items of the curriculum will not be released until later this summer.

Will I be able to use the ROBOTC Graphical with EV3 and/or NXT? And, will there be a RSOL class for that?
ROBOTC for LEGO MINDSTORMS is still in development, but it will be available later this summer. Once it is ready, there will be a Robotics Summer of Learning course specifically for it.

Live Webinar Course Schedule

  • June 16: Introduction to Software, Setup, Forums and Procedures used in this course
  • June 17: Intro to Expedition Atlantis and Moving Forward
  • June 23: Turning and Intro to Ruins of Atlantis
  • June 30: Forward until Touch and Forward until Near
  • July 7th: Turn for Angle, Forward until Color, Intro to Palm Island
  • July 14th: Loops and if/else
  • July 21st: Repeated Decisions, Continuous Decisions, Intro to Operation Reset
  • July 28th: Joystick and Button control, intro to VEX IQ Highrise

Sign Up2

Robotics Summer of Learning Starts Next Week!!

without comments

Our Robotics Summer of Learning (RSOL) course opens this Sunday, June 15 with our first live webinar course starting on Monday, June 16! The RSOL gives students the opportunity to learn how to program robots using a free copy ROBOTC 4.0 (including the new Graphical Natural Language) for Robot Virtual Worlds programming software. If you’ve always thought that ROBOTC was too difficult, you should try out the new Graphical Natural Language, which is part of ROBOTC 4.0!

Sign up here!

Live Webinar Course Schedule:

  • June 16: Introduction to Software, Setup, Forums and Procedures used in this course.
  • June 17: Intro to Expedition Atlantis and Moving Forward
  • June 23: Turning and Intro to Ruins of Atlantis
  • June 30: Forward until Touch and Forward until Near
  • July 7th: Turn for Angle, Forward until Color, Intro to Palm Island
  • July 14th: Loops and if/else
  • July 21st: Repeated Decisions, Continuous Decisions, Intro to Operation Reset
  • July 28th: Joystick and Button control, intro to VEX IQ Highrise

All courses will be held at 1:00 PM Eastern Standard Time with a live instructor. A link will be available in the CS2N Moodle course for each session. All sessions are recorded so that you can take the course at your own pace. These dates are subject to change.

And don’t forget to sign up for our Robotics Summer of Learning Newsletter to get important reminders and information throughout the summer!

Cool Project: VEX IQ Quadruped

without comments

Repost from BotBench

In my last post about the VEX IQ building system I had a small video featuring my VEX Quadruped.  I’ve done a bit of work on it since then and the gait has been greatly improved.  I also added some small rubber feet on the legs.  These are the traction links from the Tank Tread & Intake Kit.

Due to the heavy load that these motors are under, you may find that the batteries will run down a bit faster than you’re used to.  Good thing the kits come with a charger!

Up next on the agenda is to add some sensors and have it interact a bit more.  The little wheels on the bottom are not used when it is walking; the robot is fully lifted off the ground.

I’ve taken some picture, so you can see how it’s put together.  These should be enough to copy the design, should you wish to.  You can download the program to run this here: [LINK].  Note that part of the code is based on the excellent guide on creating an Arduino based quadruped: [LINK].

CIMG3355 CIMG3367

CIMG3353 CIMG3354

CIMG3357 CIMG3358

CIMG3359 CIMG3366

CIMG3360 CIMG3361

CIMG3362 CIMG3363

CIMG3364 CIMG3365

Repost from BotBench

 

Robomatter Blog Ad VEX IQ

Written by Xander Soldaat

June 3rd, 2014 at 11:17 am

Expedition Atlantis iPad App Available Today!

without comments

Flat Pad Mini Mockup

 

To celebrate the launch, Expedition Atlantis is priced at $1.99 for a limited time! Download today from the iTunes store!

 
The Robot Virtual Worlds team is proud to announce the availability of their new iPad app, Expedition Atlantis. Expedition Atlantis immerses you in a world of underwater robotics exploration, where you must solve math problems to control your robot’s movement in the deep seas ruins.
 


 

btn_standards_rollThe math problems will help students understand proportional relationships and the basics of robot programming. It is designed for the student to learn as they play, and includes in-game tutorials to help them play along. As you play, you’ll be able to customize your robot, and also earn achievements through our Computer Science Student Network (CS2N). A full teacher’s guide for using Expedition Atlantis in the classroom is available at www.robotvirtualworlds.com/ipad.
 
 

btn_research_rollExpedition Atlantis was tested in a number of diverse classroom settings. In every case, students had measurable gains in proportional understanding, as well as increased interest in math and robotics. Read more about the research here!
 
 
 
 

As you play along with the app, please send us your feedback at support@robotvirtualworlds.com! We’d love to know what you think and any improvements we can make.

Written by Vu Nguyen

May 29th, 2014 at 9:57 am

ROBOTC Omniwheel Article in Design & Technology Practice Magazine

without comments

twitterDT_logo Xander Soldaat, ROBOTC Project Contributor, was recently asked to write a robotics article for the British Design & Technology Practice magazine.  He wrote about the basics of programming a LEGO MINDSTORMS NXT omniwheel based platform, and the mathematics behind it using ROBOTC as the programming language.  

You can read a copy of the article here: [LINK].

The D&T Association is the organization that represents the interests of  Design and Technology (STEM) teachers throughout the UK.

 
 

Robomatter Blog Ad LEGO

 

Written by Cara Friez

May 13th, 2014 at 10:26 am

Student POV: Slalom Challenge

without comments

It’s Danica and Jake, back again! This time, teaching people about the slalom challenge, in ROBOTC Graphical Language for the VEX IQ platform. The challenge is to line follow using the VEX IQ color sensor without hitting the “mines”, also known as the cups.

#5

In the graphical organizer, to line follow on the left side of the line, all you have to do is use the block, lineTrackLeft, to follow the right side you have to use lineTrackRight.

#1

In this block, there are 3 boxes, one for the threshold, the second for the speed of the left motor, and the last box is for the speed of the right motor. In this line of code, the threshold of 105, the robot’s left motor is set to go at 50% power, and the right motor is set to go at 15% power.

This block has to be included into a repeat loop to make sure the robot continues to do this command for an allotted amount of time.

#2

The repeatUntil loop has many options for how long the loop should run. For this challenge, we decided to use the timer.

#3

The timer is set at 7000 milliseconds or 7 seconds, so it has enough time to make it through the slalom. Our finished program looks like this:

#4

Now you can line follow in any challenge you would like, the possibilities are endless!

 
 

Robomatter Blog Ad VEX IQ

 

Written by Cara Friez

April 2nd, 2014 at 7:47 am

Student POV: Robo 500 Challenge

without comments

Hi, we’re Alexis and Noah, two eighth grade students at Hopewell Memorial Junior High School. Earlier this week, we did the Robo 500 challenge. To write the programs, we used the recently released ROBOTC Graphical software for the VEX IQ. The goal of the challenge was to complete two laps around a Vex IQ storage bin.

ROBO 500 picture

We completed the challenge by using timing and degree measurements. The first step was to get the robot to move forward. For this, we would use a basic motor command.

Photo 1

In ROBOTC Graphical, it gives you the option to choose the values in which you want your motor to run by, such as time and rotations. In this challenge, we chose time.

Photo 2

From there, we experimented with different time values until we found the timing that was needed to finish the side of the challenge before the turn. Through testing, I found that 3.7 seconds covered the distance needed.

Photo 3

Now, what was left was the largest challenge of the program, the turn. Timing a turn can be challenging on seconds alone. So, I used degree turns. I started with a 180 degree, which brought me around about 45°. Due to the drift of the robot when it moves forward, I had to make the turn slightly less than double the 180° turn. I settled on a value of 300°.

Photo 4

Once the values were established, the rest was just repeating the commands so the robot would go around the whole box. Here is an example of my final program.

Photo 5

We were then thinking about how the turns were a hassle with trial and error, and contemplated a better way to turn. So, we decided to use a gyro sensor to have the most accurate turns possible.

To start out the program we had to reset the gyro sensor so the sensor could record the degrees from zero.

Photo 6

From here we moved forward to the end of the course for time, and we moved forward for about four seconds. Then we used a while loop. A while loop is set to check a condition and while the condition is true, it performs what is inside of the curly braces of the while loop. In this case the condition is while the gyro sensor value is less than 90 degrees.

Photo 7

We would then repeat these actions until the robot has made two full laps around the course. Here is the program for one lap. To do two laps I would just repeat this program again.

Photo 8

We were able to finish our programs efficiently in a short amount of time due to the design of the new graphical programming. This new design enables you to drag over commands from the function library; such as, moving forwards and backwards, turning, and sensor commands while avoiding the hassle of painstakingly typing each command. This reduces the time spent on each program and allows us to speed up the pace at which we program, and we are able to complete challenges in a shorter amount of time.

Photo 9To the left, we have an image of the function library and a depiction of what would happen if you dragged a command into your program. The command would line up with the next available open line and would give you options as to what values you wanted to program your robot with.

————————————————————

If you’re a student who would like to contribute to the blog, let us know at socialmedia@robotc.net.

 
 

Robomatter Blog Ad VEX IQ

 

Written by Cara Friez

March 26th, 2014 at 7:30 am