ROBOTC.net Blog  

ROBOTC News

Archive for the ‘FTC’ Category

Setting up ROBOTC and RVW for the Classroom

without comments

Setting-Up-ClassroomOnce the physical hardware (robotics kits) are secured for a classroom, the next step is to install the software (ROBOTC and Robot Virtual Worlds). It would be nearly impossible to cover every single specific setup that could be encountered on a classroom’s computers, but this blog post will cover the basic installation steps and some of the more common installation issues that educators may run into when installing ROBOTC in a classroom.

The first thing you will need to do is install ROBOTC on the computers in your classroom. To do this, always make sure to grab the latest version of ROBOTC that your license supports from the correct ROBOTC download page. If the wrong version is downloaded and installed, or if there is already a different up-to-date version of ROBOTC installed on the computers, you will not need to uninstall and reinstall the program; instead, you will simply need to activate your license in ROBOTC (more on this later). During the download process, ROBOTC will also attempt to install the necessary drivers for communications with physical robots. Depending on the level of security on the computers, you may need to get your IT department involved in order to ensure that the drivers are installed properly.

Activating_ManageOnce ROBOTC and the appropriate drivers have been installed, you will need to activate ROBOTC on each computer manually. The license activation ‘unlocks’ the ability to download code to either a physical robot or a Virtual World, depending on which license is used.  When ROBOTC is installed on a computer, all versions of ROBOTC (including different robotics platforms, such as the VEX and LEGO platforms, and different compiler options, such as Virtual Worlds compiler options) are installed at the same time. Instead of installing additional copies of the software  on the same computer (or opening a new program every time you would like to change the compiler target), the additional platforms and compiler options are ‘unlocked’ by activating their respective keys.

Before we move on to the next blog (Setting up the Robots), here a couple more tips that may come in handy when setting up ROBOTC in a classroom:

  • Depending on the programs, policies, and restrictions in place on the machines, your school’s IT department may need to be present for the installation or activation of ROBOTC, Virtual Worlds, or the installation of any drivers for the physical robots.
  • If your school’s IT department images and deploys the classroom’s computers, make sure they reference the ROBOTC Deployment Guide on the ROBOTC wiki for important help and information.
  • Make sure to check the computers’ hardware to the minimum requirements for ROBOTC or Robot Virtual Worlds before
  • Always test one computer first! If there is a problem with the installation, it is better to find out about it early and fix it before they same issue appears on a classroom full of computers.

- John Watson

Reviewing ROBOTC Concepts After a Summer Off

without comments

There is a bevy of materials to help a teacher get started teaching the ROBOTC Curriculum. But what about the teacher that has made it through the curriculum and has a robotics class returning at the beginning of the school year? Whether that teacher is preparing to enter a robotics competition or is planning on creating a cool ROBOTC project, the teacher will still need to determine what the students have retained from the previous year.

Default-Objects-copyStudents that have made it through the ROBOTC curriculum should be able to use variables and functions in their programs. A great way to assess this would be to utilize the Robot Virtual Worlds. Students can spend the first week of school trying complete all of the missions within Operation Reset. Working with Operation Reset affords teachers the opportunity to differentiate this beginning diagnostic. Students that have retained more information can work independently, while those students that need more assistance can get the help they need. This is just another great application of Robot Virtual Worlds in the robotics classroom.

If Robot Virtual Worlds is not an option, you can apply the same concept with a physical robot. For students that are already proficient with ROBOTC, a good challenge to begin the year with would be the Chasm Detection.

 

chasm-detection

 

Another great tool that a teacher can utilize is the debugging of code. This can serve as a good one or two day review of ROBOTC syntax and logic. If a teacher is anxious to get started with a project and wants a quick review, this may be the way to go. One of the nice things about using code is the teacher can get some quick and individual feedback from the students. If time allows, a teacher may use one or two examples of code, see where the students are, and then design a challenge for them. Here is an example of code that the students could troubleshoot.

 

trouble-shooting-code

 

Hopefully this gives you some ideas of how you can reintroduce ROBOTC to your students. A seamless beginning to the school year will help with all of the projects and activities that you may have planned for the rest of the school year.

- Jason McKenna

Which Robotics Kit Should I Use? LEGO Edition

without comments

EV3-Cutout-01-copyNow more than ever, robotics educators are faced with the important question of which kit they should purchase and use. This key question has been made even more intricate in the 2013-2014 school year due to the addition of the new robotics kit, LEGO MINDSTORMS EV3. This article will help break down LEGO’s kits, their capabilities and target audiences, and allow you, the educator, to make an informed decision on which kit is best for your particular classroom.

The LEGO MINDSTORMS EV3 is the all-new robotics kit from LEGO Education (creators of the LEGO MINDSTORMS NXT system). It is fully compatible with previous NXT hardware (except for the battery), including all plastic structural pieces and sensors.

  • Compatibility with the MATRIX and TETRIX metal systems is expected in fall 2014.
  • Those starting a classroom from scratch need not worry; the EV3 comes with a total of 541 elements, including a multitude of structural parts (beams, connectors, wheels, gears, etc), 4 different sensor types (color sensor, gyroscopic sensor,  ultrasonic sensor, and touch sensor), 3 motors, and the EV3 micocontroller or ‘brain’.
  • The EV3 microcontroller sports 4 sensor ports, 4 motor ports, a internal Bluetooth adapter, and a USB slot which can be used with a WiFi adapter for wireless connectivity (as well as microSDHC card slot which supports cards up to 32GB in size).
  • It utilizes a Linux-based firmware which allows for on-brick programming and datalogging.
  • The EV3 is already legal in First Lego League (ages 9-14), but we are still waiting on information on when it will be legal for First Tech Challenge (High School) competitions.
  • Recommended use: Middle School (EV3) or High School (with MATRIX or TETRIX kit).

Other-BUG-Robots

Now, let’s take a look at the LEGO MINDSTORMS NXT V2.0. Released in 2009, the NXT platform utilizes a plastic snap-fit hardware structure system, with 431 elements included in the base kit.

  • These elements consist of both structural pieces (beams, connectors, and axles, to name a few), three interactive servo motors, the NXT microcontroller, and ultrasonic, light, sound, and two touch sensors included.
  • There are also many third-party sensors available from sites such as Hitechnic, Dexter Industries, and Mindsensors.
  • The NXT is also fully compatible with the MATRIX and TETRIX metal systems.
  • Wireless capabilities include built-in Bluetooth and WiFi connectivity (provided by an external Samantha Module adapter).
  • The NXT is currently a legal microcontroller for both the First Lego League (FLL, ages 9-14) and First Tech Challenge (High School) challenges.
  • Recommended use: Middle School or High School (with MATRIX or TETRIX metal kit).

We understand that choosing a robotics kit is a tough decision. The number one factor in determining which kit is right for you will come down to the students; depending on the skill level of the students, it may be better to challenge them with a more advanced kit  (MATRIX or TETRIX kits) or they made need to start with a simpler kit (LEGO NXT or EV3 kits). No matter which kit you decide to use, though, you can rest easy knowing ROBOTC will fully support all of these platforms.

Robomatter Blog Ad LEGO

Written by John Watson

August 27th, 2013 at 5:09 pm

Organizing a Robotics Classroom

without comments

IMG_4201Getting your classroom organized for the beginning of the school year is an arduous task for even the most experienced teacher.  It can be even more demanding for those that teach robotics.  You’ve got the robot kits, you’ve been trained in ROBOTC, but how do you set up your class for the first day of school?  The goal of this article is to help answer the question for both new robotic teachers and teachers that have been teaching robotics for years.

As we all know, a robotics kit is more expensive than a textbook.  Moreover, because robotics kits contain so many small pieces, they can be much more difficult to take care of than a textbook.  As a result, keeping your kits organized is crucial.  If using a LEGO MINDSTORM NXT, EV3, or TETRIX robot, one way that I have found that can be very helpful is to name the NXT brick.  Then, give the same name to the kit. Now, assign the kit to the group of students in your class.  If the students know that over-tablethey are responsible for that kit, it goes a long way towards them acting more responsibly with the kit. If using a VEX robot, you won’t have the same ability to name your brick, but you can still able to label your robotics kit.

Which students are assigned to work together is also something that the teacher must put some thought into.  Once again, maintaining the kits is of the utmost importance.  Therefore, I am not going to allow students to work together if I feel that will not take care of the kit.  Some students are more organized and careful with the kits than others.  I always try to have one of those students in a group.  I try to have the kits named and assigned before the first day of school.  If I don’t know the students, then I may have to adjust the groups as we progress throughout the beginning of the school year.

IMG_3290

Once the kits are organized, the teacher can then start to think about how their curriculum items are going to be accessed and utilized.  A math teacher has a plan for when their students have a question about a topic, or when a student is confused about a particular concept.  A robotics teacher has to have the same type of plan in mind.  The beauty of teaching robotics lies in the fact that students are intrinsically motivated to find answers to their problems because they are highly engaged.  Some students will still be conditioned, however, to try to elicit the answer from the teacher instead of reasoning through a problem on their own.  Robotics teachers need to create a plan so the students can work towards being independent and productive problem solvers.

To that end, a good approach to a complex challenge is to examine what needs to be done before the challenge, during the challenge, and after the challenge is complete.  Before the challenge, students should be focusing on create flowcharts to organize their program and writing pseudocode to reflect those flowcharts.  During the challenge, students should focus on commenting their code and debugging techniques.  Afterwards, students should be afforded the opportunity to reflect and respond to what went well, what went not so well, and what they learned throughout the process.

DSC_0183

Giving students a little bit of structure while they engage a challenging task will go a long way towards ensuring that the students’ high level of engagement does not turn into a high level of frustration.  Engagement works both ways in that sense: High engagement leads to students that are focused on their task, but can also lead to high levels of frustration because the students desperately want to finish that task.  To avoid the frustration,teachers should provide a structure that the students can rely on when needed.  Before the school year begins, teachers should spend some time planning students’ work, and then the students can spend time during school working their plan.

The beginning of the school year is always a challenge.  As teachers, we understand that unforeseen difficulties will always arise.  However, going into the school year with as much planned and organized as possible helps us to focus on those unpredictable events that will undoubtedly occur.

Check out how we organize robot parts at the Carnegie Mellon Robotics Academy:


-Jason McKenna

Robotics Back to School Blog Series

without comments

SCHOOL-BUS-DRIVERIt is that time of year again … backpacks on our backs, buses on the streets, and lessons being planned. Yes, we are going back to school! To kick start the school year, we are introducing a six week robotics back to school blog series that highlights the technical and pedagogical side of planning for your robotics classroom. John Watson, from ROBOTC customer support, and Jason McKenna, a K-8 Gifted Support Teacher in the Hopewell Area School District outside of Pittsburgh, PA, will be sharing with you tips, tricks, advice, and recommendations on prepping your robotics classroom and curriculum.

As each blog is posted, the topics below will turn into hyperlinks, so feel free to bookmark this page!

Topics

If you have any questions or would like to start a conversation on any of the topics, feel free to leave us a comment below!

FTC Kickoff 2013 Pittsburgh PA

without comments

FTCicon

Join fellow PA FTC teams at this season’s Pennsylvania FTC Season Kick-off on September 7, 2013 from 11am to 4pm! This season it has expanded to three locations (East/Downingtown, Central/Millersville, West/Pittsburgh), and the three sites will be linked together to form one large virtual Kick-off event. The Pittsburgh event will take place at Carnegie Mellon University’s National Robotics Engineering Center.

 
 
 

Schedule of Events:

11:00 Registration
11:15 Local Info Sessions / Tours (see below)
12:15 Lunch
1:00 Welcome and Opening Remarks
1:10 Pennsylvania FTC 2013-2014 Season
1:30 Judging / Engineering Notebook Update
2:00 ROBOTC / Robot Virtual Worlds Update
2:30 TETRIX and Matrix Update
2:45 Break
3:00 2013-2014 FTC Game Reveal!
3:15 Local Game Discussion
4:00 Event Complete

Tour Information – Teams visiting the West/Pittsburgh region will have a chance to tour the National Robotics Engineering Center – a research hub of Carnegie Mellon University’s Robotics Institute. Teams will learn about how state of the art robotic concepts are being utilized in commercial, agriculture and military applications. Teams will also get to see the research and development labs for Carnegie Mellon’s Tartan Rescue, creators of CHIMP for the newest DARPA Robotics Challenge. Learn more by visiting http://www.rec.ri.cmu.edu.

Written by Cara Friez

August 14th, 2013 at 5:50 pm

ROBOTC Student – Kristen McKellar

without comments

Kristen-McKellarWe had the chance to interview the lead programmer for FTC Team 5037, Kristen McKellar. She is an impressive programmer with a bright future ahead. Check out her story on how her knowledge of ROBOTC helped her win the National 4-H Engineering Challenge …
 
 
 
 
 
 


 
Are you a ROBOTC student who wants to share your story with us? If so, send us an email at socialmedia@robotc.net!

Written by Cara Friez

August 2nd, 2013 at 3:36 pm

New RVW Level Build Tutorial at CS2N

without comments

Create-Own-Level-BuilderWe are happy to announce a new course on CS2N, Create Your Own Level with RVW Level Builder. In this new course, you will go through the steps of making your own custom level inRobot Virtual Worlds‘ Level Builder!

The class is structured on a 5-phase version of the engineering process (Concept, Design, Production, Testing, Release). In each phase, you will take a further step towards completing your level, either through planning, creating, or testing your level.

 
 
 
 


 
 

Beacons-and-BarriersLevel Builder enables users to easily create levels and challenges for others to solve. Teachers can create custom challenges for their classrooms or generate unique challenges for each student. Multiple real and fantasy themed robots and objects are available for use. You can also import your own objects with the 3D Model Importer. Your level plays like any other virtual world. You can access all of the motors and sensors on the virtual robot to solve the challenge using ROBOTC code.

Sign up for CS2N and this FREE course today - Create Your Own Level with RVW Level Builder. And don’t forget we have a Level Builder competition going on until August 31, 2013, Beacons and Barriers, with a chance to win some great prizes!!
 
 
 

Cool Project: Monster Ball Sorting Factory

without comments

OLYMPUS DIGITAL CAMERA

 

Ray McNamara is relatively new to ROBOTC, having only really started to seriously use it within the past year, but already he’s come up with some interesting projects that caught our eye. The “Monster Ball Sorting Factory”, which he shared with us on the forum, is definitely a cool project we had to share.
 


 

The Factory is a cooperation between two robots Ray’s designed. One is an NXT Forklift truck, which uses a special non-standard part: a pair of Omni Wheels in the back to replace the standard single rotating wheel, which makes the Forklift’s turns a lot more reliable.

The other is a long, conveyor belt and claw arm robot that sorts balls piled onto a conveyor belt based on their color. It then puts them into containers, which the Forklift periodically takes and places in a slot so that the robot can dump it into a bigger bin. This robot is a combination of an earlier project, the “Bin Emptying Machine,” that takes the balls out of their container with a rail mounted crane that does the sorting.

We asked Ray about the project and his motivation for doing it and he replied:

“My Monster Sorter is still a work in progress, much to my wife’s annoyance due to the amount of real-estate it has been taking up in the lounge room since early December 2012.  I hope to have it all running on a single NXT (excluding the Forklift), by means of 2x Mindsensors Motor Multiplexers and 1x Mindsensors Sensor Multiplexer. If my calculations are right, the single NXT Brick will control 8x Motors and 10x Sensors.

My motivation was the challenge to learn how far I take the standard Colour Sorter model. It really started back in 2010, when I convinced Rotacaster Australia‘s GM to turn his industrial rollers into Omni-wheels for my LEGO Models and robots. After almost exhausting the possibilities of Holonomic Platforms, I looked into other uses for the Rotacaster Wheels, resulting in my Forklift Truck.

Once I had my Forklift Truck, I needed to put it to work. The Ball Sorting Factory was what evolved over a few days. Since then I have been fine tuning the hardware and the ROBOTC code used to control it. In the process, I have also been Beta Testing some Mindsensors Sensors and Multiplexers with it.

I always try to include a detailed description, photos, video, code and CAD files for my robots when they are published to my blog. Although it takes a lot of time to put my blog posts together, I feel it is worth it. I get a lot questions and praise from many people who use my resources. I especially enjoy helping out students with their queries.”

To download the code to this project, click here – ROBOTC Code for Factory and ROBOTC Code for Forklift.

Thanks to Ray for taking the time to respond to our questions! Visit Ray’s website at www.rjmcnamara.com to see more projects, pictures, codes, videos, and much more.

Do you have a cool project or video you want to share with us? If so, send us an email at socialmedia@robotc.net.

Written by Cara Friez

July 31st, 2013 at 3:55 pm

ROBOTC Mentors – Kjersti and Violet

without comments

robotMag_2We interviewed Kjersti Chippindale and Violet Replicon, who are the mentors for the FIRST Tech Team 6002 – The Basilisks, and asked them to tell us about their FTC robotics experience. They used to be members of FTC Team Antipodes, but decided that they’d rather spend their Senior year mentoring two brand new teams in hopes to keep the robotics tradition alive at their school.

 
 
 
 
 
 
 

Are you a robotics student, mentor, coach, or teacher who wants to share your story with us? If so, send us an email at socialmedia@cs2n.org!
 

Written by Cara Friez

July 25th, 2013 at 5:42 pm