ROBOTC.net Blog  

ROBOTC News

Archive for the ‘FTC’ Category

Troubleshooting Common Issues in ROBOTC

without comments

TroubleshootingEventually your classroom may run into issues with either the ROBOTC software, the robots, or both. The most important question that arises when this happens is ‘Where do I go for help?’ Fortunately, ROBOTC has you covered with an expansive support system designed to help all ROBOTC users get back on their programming feet as quickly and easily as possible. This blog post will take a look at some of the more common issues that you may run into and how to quickly resolve them.

“I am having trouble installing ROBOTC, and do not know why it will not install properly.”
ROBOTC installs like most other programs, but even so you may run into installation issues (depending on your classroom computers’ specific setup).  If you run into installation troubles, take a look through our ‘Getting Started’ guide on the ROBOTC wiki as it covers many of the common installation issues that classrooms in particular run into.

“I have installed ROBOTC but am running into issues activating my license.”
First, make sure your license has activations remaining by logging into the ROBOTC customer service page using your license ID and password. Next, check to see if your school’s IT department has recently reimaged the computers; if they have, the license information may have been deployed incorrectly and they will have to contact ROBOTC technical support (below).

“ROBOTC is installed and activated, but my computer will not connect to my robot/won’t load Virtual Worlds!”
There are a variety of reasons this could be occurring (depending on the computer’s set up and the specific robot platform being used), but normally these issue is solved by following the appropriate setup guide on the ROBOTC wiki (LEGO MINDSTORMS NXT, VEX IQ, and VEX Cortex). For the Robot Virtual Worlds software, double check to make sure the computer’s hardware meets or exceeds the minimum requirements as well.

RVW-Specs

“I have a different question or would like more information on these particular issues.”
There are several resources that can be used when troubleshooting a ROBOTC installation or physical robot issue.

  • Coding Problems and Questions – All coding questions should be forwarded to the ROBOTC forums, where the entire support staff may see and answer them.
  • Specific Commands, Functions, etc – The ROBOTC wiki is full of useful information including setup guides, programming tips, breakdowns of commands and functions, and more.
  • Technical Issues and Bug Reports – For any and all bugs and glitches you may run into, the ROBOTC support line (support@robotc.net) will be the best mode to contact the ROBOTC support team directly.

Written by John Watson

September 17th, 2013 at 2:22 pm

Differentiating Instruction in the Robotics Classroom

without comments

Main-DifferentiatedThe challenge for teachers in today’s educational environment is to teach student at their instructional level. Instead of creating an artificial level to instruct the entire class, teachers have to assess each student’s current level and create a plan to ensure that the student has academic growth from that beginning baseline. It’s best to think about this with an example. A sixth grade student has a reading comprehension at a 9th grade level at the beginning of the school year. The student takes assessments during the spring of that school year. When those assessments are scored, it shows that the student is reading at a 9th grade comprehension level. In the past, teachers and parents would be happy with that information, but the recent push towards differentiated instruction has forced educators to look at this information in a new light. What implications does this have for a robotics teacher?

IMG_1083Luckily, teaching robotics seamlessly fits into the demands of differentiated instruction. First, students are encouraged to come up with different solutions to problems. Whether it is a building challenge or a programming exercise, different students are going to come up with different solutions. Students are encouraged to do this in other disciplines also, but robotics is unique because it is so open-ended. There are only so many ways you can solve a math problem, but there is a myriad of different ways to program your robot to accomplish a task.

Secondly, students who are learning robotics are not forced to conform to an artificial ceiling. In another classroom, a teacher has to keep a student’s learning somewhat in line with the rest of the class. When teachers try to differentiate instruction, they create projects or assignments that are open-ended so students can explore those items as much as they can. However, when that assignment/project is completed, students are all brought back to the same point within the curriculum. Teaching robotics revolves around problem-based learning. IMG_2211Therefore, as the students learn how to solve a programming challenge with more sophisticated ROBOTC code, they are accelerating their knowledge both within that project and within the larger curriculum. While some students are mastering the fundamentals of programming their robot to move, other students can be incorporating more complex programming tools, like functions, into their programs. Robotics teachers can point students in the right direction so they can explore different and more intriguing programming concepts to apply to their challenges. It is not necessary that students memorize all of the different programming/building techniques, but that they know how to access the information when they need it. In this way, students are given the tools to create some ownership with their learning. That ownership, combined with the engagement of robotics helps to provide the true key to differentiation: high student interest.

Simply, if students are not interested in what they are doing, they will never develop the intrinsic motivation needed to push their learning. Students will work towards the minimum unless they are engaged and challenged. Teaching robotics provides the perfect platform to accomplish this goal and create a learning environment in which students are receiving individual acceleration and enrichment. Robotics is the perfect means to achieve the end of differentiated instruction.

- Jason McKenna

Written by Cara Friez

September 12th, 2013 at 2:30 pm

Setting Up Robots – LEGO Edition

without comments

SettingUpLEGONow that the physical robot kits are in the classroom and ROBOTC is installed and activated, you should be ready to build the physical robots for your classroom. One of the best features of a LEGO Mindstorms educational robotics kit is that they allow students to create a nearly limitless range of robots; the downside of this, however, is maintaining student-created robots in a classroom. To help with this, ROBOTC and their related Video Trainer Curriculum support several standard models to help keep a baseline in the classroom.

cutout_rem_gripper_T_300The first of such robots we will look at is the NXT REMbot (which stands for ‘Robotics Education Model), the standard NXT that is used in the ROBOTC Curriculum for TETRIX and LEGO MINDSTORMS. The REMbot utilizes three NXT motors (two for driving, one for the (optional) arm), a Light Sensor mounted below the robot, a Touch Sensor mounted in the front, a Sonar Sensor positioned above the robot, and a Sound Sensor on the side of the REMBot. This model allows for a variety of tasks to be completed and is designed to work with all of the challenges in the ROBOTC Curriculum.

mantis-cutout-300x275

If your classroom will be utilizing the TETRIX kit, the Mantis Robot standard model would be the build of choice. The Mantis Robot utilizes the TETRIX kit to add two TETRIX DC motors (for driving) and a TETRIX Servo (for the arm), as well as the respective motor and servo controllers; all of which are fully programmable in ROBOTC. Sensors can be added using any of the remaining sensor ports (one of which is used by the HiTechnic Motor/Servo controller chain).

Users of the MATRIX kits are not left in the dark however! MATRIX also has several options to use in the classroom, but the Quick Start Rover stands out from the pack. Combined with The Little Gripper, the MATRIX kits can be quickly and effectively set up for a standard robotics classroom. Like the TETRIX bots, the Quick Start Rover can be outfitted with NXT sensors on any of the remaining sensor ports for added versatility. It uses two MATRIX motors for movement and a MATRIX servo for The Little Gripper (all controlled through one MATRIX controller), all of which is fully programmable in ROBOTC.

Visit CMU’s Robotics Academy LEGO site for more information on the different kits available and to find build instructions.

Written by John Watson

September 10th, 2013 at 2:33 pm

ROBOTC Curriculum Breakdown

without comments

ROBOTC-BreakdownA curriculum pacing guide is something that teachers have to consider whenever they examine their curriculum. This fact does not escape teachers of <a href=”http://www.robotc.net”>ROBOTC</a>. Whenever I come across teachers who are just starting to use the ROBOTC curriculum, often their first question revolves around how long the curriculum will take. Once again, teachers are used to having some type of pacing guide that delineates how a subject is to be taught. The ROBOTC curriculum is not organized in that fashion. Instead, the curriculum is organized by topic. The topics include basic programming fundamentals, robot movement, robot sensing, etc. The teacher is then free to spend an appropriate amount of time within each topic.

As teachers, this freedom is welcome. It is welcome because the pacing that comes with most textbooks is an impossible guide to follow. In order to create a true pacing guide, student background knowledge would have to be taken into account. Since every classroom is different (sometimes within the same grade, within the same school), it is impossible to gauge how quickly the students are going to master the concepts as they are presented. Screenshot-2013-09-05_15.11.12Additionally, as the teacher becomes more familiar with ROBOTC, they will find that they spend more time on particular concepts then they did the first time they taught the curriculum. For example, when I first taught ROBOTC, I spent 20 minutes discussing Flowcharts and Pseudocode. Experience has now taught me to spend a significant amount of time on these topics. I also spend much more time talking about Errors. Specifically, what should a student do when they get the dreaded compiler errors in their program? Experience has taught me to spend much more time on thinking about the logic of a program before the writing of ROBOTC and on debugging strategies once the code has been written.

Screenshot-2013-08-05_15.01.181Each of the aforementioned sections of the ROBOTC curriculum contains a programming challenge. The programming challenged is designed to showcase the skills that were emphasized in that section. Each section also contains an assortment of “mini challenges”. These challenges can be used at the teacher’s discretion. They all do not have to be completed. However, they can be very useful. For example, after the students have spent a day or two learning a topic, I will begin the following class with one of these mini challenges. They might not know all of the skills needed to complete the section challenge, but the mini challenge is a good assessment of what has been presented so far in that section. This also serves as a good change of pace for the class. Simply, you can’t learn to program without actually programming. In order to really understand the applications of while loops or if/else statements, students need to apply them. The mini challenges found within the ROBOTC curriculum serve as a great opportunity to scaffold skills toward their more challenging applications.

A beginning teacher of ROBOTC could teach the basic ROBOTC curriculum in one semester. By including many of the mini challenges, the curriculum can be stretched easily over a semester. I often tell teachers who are teaching the class for a year to do this, and then to end the year with a larger programming challenge. After the students have made it through the ROBOTC curriculum, I enjoy introducing them to Multi-Robot Communication. The sensor needed (NXTBee) is inexpensive, and there are a lot of great ideas for activities and programming challenges.

 


 

If you have a stronger background in computer science, and maybe you are teaching older students, you may be able to navigate through the curriculum much faster. What then do you do with students if you have them for an entire year? Luckily, there are many great ROBOTC projects on robotc.net. Moreover, the ROBOTC forum is also a wonderful place to look for ideas for projects, in-class competitions, and programming challenges.

Teaching robotics and ROBOTC is a lot of fun. The ability to watch your students apply what they learn in the ROBOTC curriculum in such engaging and open-ended activities is one of the main reasons why.

Setting up ROBOTC and RVW for the Classroom

without comments

Setting-Up-ClassroomOnce the physical hardware (robotics kits) are secured for a classroom, the next step is to install the software (ROBOTC and Robot Virtual Worlds). It would be nearly impossible to cover every single specific setup that could be encountered on a classroom’s computers, but this blog post will cover the basic installation steps and some of the more common installation issues that educators may run into when installing ROBOTC in a classroom.

The first thing you will need to do is install ROBOTC on the computers in your classroom. To do this, always make sure to grab the latest version of ROBOTC that your license supports from the correct ROBOTC download page. If the wrong version is downloaded and installed, or if there is already a different up-to-date version of ROBOTC installed on the computers, you will not need to uninstall and reinstall the program; instead, you will simply need to activate your license in ROBOTC (more on this later). During the download process, ROBOTC will also attempt to install the necessary drivers for communications with physical robots. Depending on the level of security on the computers, you may need to get your IT department involved in order to ensure that the drivers are installed properly.

Activating_ManageOnce ROBOTC and the appropriate drivers have been installed, you will need to activate ROBOTC on each computer manually. The license activation ‘unlocks’ the ability to download code to either a physical robot or a Virtual World, depending on which license is used.  When ROBOTC is installed on a computer, all versions of ROBOTC (including different robotics platforms, such as the VEX and LEGO platforms, and different compiler options, such as Virtual Worlds compiler options) are installed at the same time. Instead of installing additional copies of the software  on the same computer (or opening a new program every time you would like to change the compiler target), the additional platforms and compiler options are ‘unlocked’ by activating their respective keys.

Before we move on to the next blog (Setting up the Robots), here a couple more tips that may come in handy when setting up ROBOTC in a classroom:

  • Depending on the programs, policies, and restrictions in place on the machines, your school’s IT department may need to be present for the installation or activation of ROBOTC, Virtual Worlds, or the installation of any drivers for the physical robots.
  • If your school’s IT department images and deploys the classroom’s computers, make sure they reference the ROBOTC Deployment Guide on the ROBOTC wiki for important help and information.
  • Make sure to check the computers’ hardware to the minimum requirements for ROBOTC or Robot Virtual Worlds before
  • Always test one computer first! If there is a problem with the installation, it is better to find out about it early and fix it before they same issue appears on a classroom full of computers.

- John Watson

Reviewing ROBOTC Concepts After a Summer Off

without comments

There is a bevy of materials to help a teacher get started teaching the ROBOTC Curriculum. But what about the teacher that has made it through the curriculum and has a robotics class returning at the beginning of the school year? Whether that teacher is preparing to enter a robotics competition or is planning on creating a cool ROBOTC project, the teacher will still need to determine what the students have retained from the previous year.

Default-Objects-copyStudents that have made it through the ROBOTC curriculum should be able to use variables and functions in their programs. A great way to assess this would be to utilize the Robot Virtual Worlds. Students can spend the first week of school trying complete all of the missions within Operation Reset. Working with Operation Reset affords teachers the opportunity to differentiate this beginning diagnostic. Students that have retained more information can work independently, while those students that need more assistance can get the help they need. This is just another great application of Robot Virtual Worlds in the robotics classroom.

If Robot Virtual Worlds is not an option, you can apply the same concept with a physical robot. For students that are already proficient with ROBOTC, a good challenge to begin the year with would be the Chasm Detection.

 

chasm-detection

 

Another great tool that a teacher can utilize is the debugging of code. This can serve as a good one or two day review of ROBOTC syntax and logic. If a teacher is anxious to get started with a project and wants a quick review, this may be the way to go. One of the nice things about using code is the teacher can get some quick and individual feedback from the students. If time allows, a teacher may use one or two examples of code, see where the students are, and then design a challenge for them. Here is an example of code that the students could troubleshoot.

 

trouble-shooting-code

 

Hopefully this gives you some ideas of how you can reintroduce ROBOTC to your students. A seamless beginning to the school year will help with all of the projects and activities that you may have planned for the rest of the school year.

- Jason McKenna

Which Robotics Kit Should I Use? LEGO Edition

without comments

EV3-Cutout-01-copyNow more than ever, robotics educators are faced with the important question of which kit they should purchase and use. This key question has been made even more intricate in the 2013-2014 school year due to the addition of the new robotics kit, LEGO MINDSTORMS EV3. This article will help break down LEGO’s kits, their capabilities and target audiences, and allow you, the educator, to make an informed decision on which kit is best for your particular classroom.

The LEGO MINDSTORMS EV3 is the all-new robotics kit from LEGO Education (creators of the LEGO MINDSTORMS NXT system). It is fully compatible with previous NXT hardware (except for the battery), including all plastic structural pieces and sensors.

 

 

 

 

  • Compatibility with the MATRIX and TETRIX metal systems is expected in fall 2013.
  • Those starting a classroom from scratch need not worry; the EV3 comes with a total of 541 elements, including a multitude of structural parts (beams, connectors, wheels, gears, etc), 4 different sensor types (color sensor, gyroscopic sensor,  ultrasonic sensor, and touch sensor), 3 motors, and the EV3 micocontroller or ‘brain’.
  • The EV3 microcontroller sports 4 sensor ports, 4 motor ports, a internal Bluetooth adapter, and a USB slot which can be used with a WiFi adapter for wireless connectivity (as well as microSDHC card slot which supports cards up to 32GB in size).
  • It utilizes a Linux-based firmware which allows for on-brick programming and datalogging.
  • The EV3 will be legal in the 2013 First Lego League (ages 9-14) and the 2014-2015 First Tech Challenge (High School) competitions.
  • Recommended use: Middle School (EV3) or High School (with MATRIX or TETRIX kit).

Other-BUG-Robots

Now, let’s take a look at the LEGO MINDSTORMS NXT V2.0. Released in 2009, the NXT platform utilizes a plastic snap-fit hardware structure system, with 431 elements included in the base kit.

  • These elements consist of both structural pieces (beams, connectors, and axles, to name a few), three interactive servo motors, the NXT microcontroller, and ultrasonic, light, sound, and two touch sensors included.
  • There are also many third-party sensors available from sites such as Hitechnic, Dexter Industries, and Mindsensors.
  • The NXT is also fully compatible with the MATRIX and TETRIX metal systems.
  • Wireless capabilities include built-in Bluetooth and WiFi connectivity (provided by an external Samantha Module adapter).
  • The NXT is currently a legal microcontroller for both the First Lego League (FLL, ages 9-14) and First Tech Challenge (High School) challenges.
  • Recommended use: Middle School or High School (with MATRIX or TETRIX metal kit).

We understand that choosing a robotics kit is a tough decision. The number one factor in determining which kit is right for you will come down to the students; depending on the skill level of the students, it may be better to challenge them with a more advanced kit  (MATRIX or TETRIX kits) or they made need to start with a simpler kit (LEGO NXT or EV3 kits). No matter which kit you decide to use, though, you can rest easy knowing ROBOTC will fully support all of these platforms.


 
 

Written by John Watson

August 27th, 2013 at 5:09 pm

Organizing a Robotics Classroom

without comments

IMG_4201Getting your classroom organized for the beginning of the school year is an arduous task for even the most experienced teacher.  It can be even more demanding for those that teach robotics.  You’ve got the robot kits, you’ve been trained in ROBOTC, but how do you set up your class for the first day of school?  The goal of this article is to help answer the question for both new robotic teachers and teachers that have been teaching robotics for years.

As we all know, a robotics kit is more expensive than a textbook.  Moreover, because robotics kits contain so many small pieces, they can be much more difficult to take care of than a textbook.  As a result, keeping your kits organized is crucial.  If using a Lego Mindstorms or Tetrix robot, one way that I have found that can be very helpful is to name the NXT brick.  Then, give the same name to the kit. Now, assign the kit to the group of students in your class.  If the students know that over-tablethey are responsible for that kit, it goes a long way towards them acting more responsibly with the kit. If using a VEX robot, you won’t have the same ability to name your brick, but you can still able to label your robotics kit.

Which students are assigned to work together is also something that the teacher must put some thought into.  Once again, maintaining the kits is of the utmost importance.  Therefore, I am not going to allow students to work together if I feel that will not take care of the kit.  Some students are more organized and careful with the kits than others.  I always try to have one of those students in a group.  I try to have the kits named and assigned before the first day of school.  If I don’t know the students, then I may have to adjust the groups as we progress throughout the beginning of the school year.

IMG_3290

Once the kits are organized, the teacher can then start to think about how their curriculum items are going to be accessed and utilized.  A math teacher has a plan for when their students have a question about a topic, or when a student is confused about a particular concept.  A robotics teacher has to have the same type of plan in mind.  The beauty of teaching robotics lies in the fact that students are intrinsically motivated to find answers to their problems because they are highly engaged.  Some students will still be conditioned, however, to try to elicit the answer from the teacher instead of reasoning through a problem on their own.  Robotics teachers need to create a plan so the students can work towards being independent and productive problem solvers.

To that end, a good approach to a complex challenge is to examine what needs to be done before the challenge, during the challenge, and after the challenge is complete.  Before the challenge, students should be focusing on create flowcharts to organize their program and writing pseudocode to reflect those flowcharts.  During the challenge, students should focus on commenting their code and debugging techniques.  Afterwards, students should be afforded the opportunity to reflect and respond to what went well, what went not so well, and what they learned throughout the process.

DSC_0183

Giving students a little bit of structure while they engage a challenging task will go a long way towards ensuring that the students’ high level of engagement does not turn into a high level of frustration.  Engagement works both ways in that sense: High engagement leads to students that are focused on their task, but can also lead to high levels of frustration because the students desperately want to finish that task.  To avoid the frustration,teachers should provide a structure that the students can rely on when needed.  Before the school year begins, teachers should spend some time planning students’ work, and then the students can spend time during school working their plan.

The beginning of the school year is always a challenge.  As teachers, we understand that unforeseen difficulties will always arise.  However, going into the school year with as much planned and organized as possible helps us to focus on those unpredictable events that will undoubtedly occur.

Check out how we organize robot parts at the Carnegie Mellon Robotics Academy:


-Jason McKenna

Robotics Back to School Blog Series

without comments

SCHOOL-BUS-DRIVERIt is that time of year again … backpacks on our backs, buses on the streets, and lessons being planned. Yes, we are going back to school! To kick start the school year, we are introducing a six week robotics back to school blog series that highlights the technical and pedagogical side of planning for your robotics classroom. John Watson, from ROBOTC customer support, and Jason McKenna, a K-8 Gifted Support Teacher in the Hopewell Area School District outside of Pittsburgh, PA, will be sharing with you tips, tricks, advice, and recommendations on prepping your robotics classroom and curriculum.

As each blog is posted, the topics below will turn into hyperlinks, so feel free to bookmark this page!

Topics

If you have any questions or would like to start a conversation on any of the topics, feel free to leave us a comment below!

FTC Kickoff 2013 Pittsburgh PA

without comments

FTCicon

Join fellow PA FTC teams at this season’s Pennsylvania FTC Season Kick-off on September 7, 2013 from 11am to 4pm! This season it has expanded to three locations (East/Downingtown, Central/Millersville, West/Pittsburgh), and the three sites will be linked together to form one large virtual Kick-off event. The Pittsburgh event will take place at Carnegie Mellon University’s National Robotics Engineering Center.

 
 
 

Schedule of Events:

11:00 Registration
11:15 Local Info Sessions / Tours (see below)
12:15 Lunch
1:00 Welcome and Opening Remarks
1:10 Pennsylvania FTC 2013-2014 Season
1:30 Judging / Engineering Notebook Update
2:00 ROBOTC / Robot Virtual Worlds Update
2:30 TETRIX and Matrix Update
2:45 Break
3:00 2013-2014 FTC Game Reveal!
3:15 Local Game Discussion
4:00 Event Complete

Tour Information – Teams visiting the West/Pittsburgh region will have a chance to tour the National Robotics Engineering Center – a research hub of Carnegie Mellon University’s Robotics Institute. Teams will learn about how state of the art robotic concepts are being utilized in commercial, agriculture and military applications. Teams will also get to see the research and development labs for Carnegie Mellon’s Tartan Rescue, creators of CHIMP for the newest DARPA Robotics Challenge. Learn more by visiting http://www.rec.ri.cmu.edu.

Written by Cara Friez

August 14th, 2013 at 5:50 pm