ROBOTC.net Blog  

ROBOTC News

5 Ways to Engage Students in Your STEM Classroom

2 comments

VEX Engage Kids

There is a direct connection between student engagement and student learning! But how do you engage kids in learning? Contextualized activities that relate learning to real-world applications provide great opportunities to teach big ideas in mathematics, engineering, and computational thinking, all while keeping students engaged. If you pick the right activities, students learn because they want to, not because they’re being told, “you need to.”

But, do we really know what students will need to know as adults? Not long ago, it was important to learn to type, but now we have voice recognition software that gets better with every new release. And most of us were taught to read an analog clock, write in cursive, and balance a checkbook, all skills that are no longer necessary in today’s world.

IMG_7195While we may not know exactly what our students will need to know as adults, we know they need to learn “enduring understandings,” things like how to solve problems, how to reason, how to break big problems into smaller problems, and how to organize ideas. Contextualized problem-solving activities, which integrate learning with the development of 21st century skills, are a great way to engage students in learning and teach enduring understandings.

In today’s world, we find new “smart systems” integrated across all industry sectors (medical, banking, transportation, manufacturing, entertainment, etc.). These systems are robotic in nature, which makes robotics engineering problems a great choice to provide contextualize student learning. Here are just a few of the ways you can use robotics in your STEM classroom to keep students engaged:

Use Project Based Learning (PBL) Activities

IMG_2181PBL activities are great because the place the responsibility of developing a solution directly in students’ hands. Studies show that students learning in a PBL environment often retain far more than students who sit passively in class and listen to lectures. PBL activities have also been shown to improve students’ attitudes about your class, and also help develop their critical thinking, communication, and creative thinking skills. [1],[2]

Robotic engineering activities are inherently an engaging, PBL activity. However, if you want students to develop the enduring understandings that take place in well thought out lessons, the activities need to be scaffolded and foregrounded in very specific ways. For teachers new to robotics project-based learning, check out our free online VEX and LEGO curriculum, which are designed for introductory through advanced classrooms.

Already have a robotics program but need more ideas? Check out this Teacher POV blog post for some ideas on using robotics in your STEM classroom.

Hold an in-class robotics competition 

Robotics competitions have been proven to develop 21st century skills and teach important mathematics, computational thinking, and engineering skills. They also provide a fun way to motivate students and keep them engaged.

Build-BetterBut, implementing in-class competitions can be expensive on multiple fronts: the cost of kits for every student, student class time to iterate on solutions, and prep time to implement the actual competition. Our suggestion is to implement a virtual competition as a capstone activity, using Robot Virtual Worlds. Virtual competitions can be direct simulations of existing competitions, or can be hybrid competitions using one of the game worlds that are available. Or, they can even be games that students create using the Level Builder and the Model Importer.

Model ImporterAlthough virtual competitions may appear to be programming centric, they can also be used to develop teamwork and collaboration (I will solve this part of the problem while you work on that part), develop problem solving and engineering competencies (your team is responsible to develop a virtual robotics challenge that demands that students use feedback from the robot’s ultrasonic and gyro to solve the problems), and develop college and career readiness skills (you have to show your research and present your findings to the class). In other words, virtual competitions provide a unique opportunity for students to practice programming, develop engineering competencies, and have fun!

Beltway1-300x169Here’s a Teacher POV blog post about how you can use a game like VEX IQ Beltway to create an in-class competition. Another option for an in-class robotics competition is to use Robot Virtual Worlds in conjunction with our curriculum to create a scaffold learning experience for your students that’s both exciting and engaging. The schedule below shows how to implement the contest as part of a semester-long project: 

 

 

 

RVW_Teaching_Calendar copy

 

Using Mini-lessons

VEX Mini ChallengeKids attention spans are short, in the 8 – 14 minute range. That makes it difficult to hold their attention in a 50-minute lesson. This is where mini-lessons can help. Mini-lessons are short, 10 – 15 minute lessons that focus on a specific concept or skill. With mini-lessons, not only are you better able to keep students’ attention, you also give them the chance to to practice applying what they’re learning, one step at a time.

Our Robot Virtual Worlds software is a great fit for mini robotics lessons. In fact, we have mini lessons built into our free online curriculum, for both VEX and LEGO.

Here are a few other ideas for Robot Virtual Worlds mini-lessons:

  • Use the Measurement Toolkit to plot out a path, then have your students do the math to hit each waypoint
  • Use the Level Builder to teach basic game design principles like obstacles, checkpoints, and goals
  • Write a Roomba-like maze solving algorithm (move forward to a wall, then turn right, repeat forever) to navigate custom mazes in the Level Builder

Incorporate student input and interests into your lessons

Students learn better when they take an active role in their own learning. Incorporating students input and interests into your lessons is a great way to get students engaged.

Screenshot-2014-01-15_14.12.03One way you can do this with robotics is to take student input into account when designing projects and challenges. One option is to use Robot Virtual Worlds, along with the Level Builder, to to create different challenges for students to choose from. Or, even better, have students use the Level Builder to design their own challenges!

Another way to incorporate students into your planning is to use automated assessment tools to track students progress and make intelligent instructional decision about what topics students need more help with.

Here’s one way you can use Robot Virtual Worlds to direct your instruction: Create a challenge in the Robot Virtual World Level Builder that asks students to utilize different programming concepts. You’ll be able to see what skills students are struggling with, and can design your lessons accordingly.

Show students how what they’re learning is relevant

tank-girlOne of the biggest complaints students have about engineering and math is that it’s hard for them to see how it’s relevant to their world. By programming robots, students can see how what they’re learning has a direct impact in the real world, and can see how individual math and engineering elements come together to form a solution to a real problem.

Here’s a great blog post from Ross Hartley, a teacher in the Pickerington Local School District, about using robotics to provide contextualized learning and have kids solve real-world problems.

New to Robotics?

If you’re new to robotics, check out this video from Carnegie Mellon’s Robotics Academy, which talks about the engaging nature of robotics, and the cools things you can do.

 

 

[1] “Summary of Research on Project-Based Learning.” Center of Excellence In Leadership of Learning (2011): n. pag. University of Indianapolis, June 2009. Web.

[2] Grant, M.M (2011). Learning. Beliefs, and Products: Students’ Perspectives with Project-based Learning. Interdisciplinary Journal of Problem-Based Learning, 5(2).

Written by LeeAnn Baronett

October 6th, 2015 at 6:00 am