ROBOTC.net Blog  

ROBOTC News

Setting Up Robots – LEGO Edition

No comments

SettingUpLEGONow that the physical robot kits are in the classroom and ROBOTC is installed and activated, you should be ready to build the physical robots for your classroom. One of the best features of a LEGO Mindstorms educational robotics kit is that they allow students to create a nearly limitless range of robots; the downside of this, however, is maintaining student-created robots in a classroom. To help with this, ROBOTC and their related Video Trainer Curriculum support several standard models to help keep a baseline in the classroom.

cutout_rem_gripper_T_300The first of such robots we will look at is the NXT REMbot (which stands for ‘Robotics Education Model), the standard NXT that is used in the ROBOTC Curriculum for TETRIX and LEGO MINDSTORMS. The REMbot utilizes three NXT motors (two for driving, one for the (optional) arm), a Light Sensor mounted below the robot, a Touch Sensor mounted in the front, a Sonar Sensor positioned above the robot, and a Sound Sensor on the side of the REMBot. This model allows for a variety of tasks to be completed and is designed to work with all of the challenges in the ROBOTC Curriculum.

mantis-cutout-300x275

If your classroom will be utilizing the TETRIX kit, the Mantis Robot standard model would be the build of choice. The Mantis Robot utilizes the TETRIX kit to add two TETRIX DC motors (for driving) and a TETRIX Servo (for the arm), as well as the respective motor and servo controllers; all of which are fully programmable in ROBOTC. Sensors can be added using any of the remaining sensor ports (one of which is used by the HiTechnic Motor/Servo controller chain).

Users of the MATRIX kits are not left in the dark however! MATRIX also has several options to use in the classroom, but the Quick Start Rover stands out from the pack. Combined with The Little Gripper, the MATRIX kits can be quickly and effectively set up for a standard robotics classroom. Like the TETRIX bots, the Quick Start Rover can be outfitted with NXT sensors on any of the remaining sensor ports for added versatility. It uses two MATRIX motors for movement and a MATRIX servo for The Little Gripper (all controlled through one MATRIX controller), all of which is fully programmable in ROBOTC.

Visit CMU’s Robotics Academy LEGO site for more information on the different kits available and to find build instructions.

 
 

Robomatter Blog Ad LEGO

 

Written by John Watson

September 10th, 2013 at 2:33 pm