Archive for October 13th, 2011

Programming the VEX Gyro in ROBOTC

with one comment

The new VEX Yaw Rate Gyro is one of the more sophisticated sensors in the VEX Robotics System – but it’s also one of the most useful and powerful. Among other things, the Gyro allows your robot to make very precise, consistent turns.

Other sensors, like the Shaft Encoders, allow you to control your robot’s turns… but indirectly. The Shaft Encoders can measure the rotation of the axles (or shafts) of your robot’s drive train. By monitoring how much the axles spin, you can also monitor and control how much your robot moves forward or turns. (As a side note, some great tutorials on using the Shaft Encoders to do just that can be found in the Movement section of the VEX Cortex Video Trainer.)

The Gyro, on the other hand, actually measures the rotation of your robot. Factors such as wheel slippage and varying surface friction that cause inconsistencies with Shaft Encoder-based turns are far less problematic with the Gyro; your robot will turn until it reaches the target you set – no matter how much the wheels slip or how long it takes!

There are a number of different ways that electronic Gyros work. The VEX Gyro includes a sensing element kept in continuous oscillation which reacts when angular rate is applied, based on the “Coriolis effect”. The Coriolis effect is a deflection of moving objects when they are viewed in a rotating reference frame. In a reference frame with clockwise rotation, the deflection is to the left of the motion of the object; in one with counter-clockwise rotation, the deflection is to the right. This effect is caused by the rotation of the Earth and the inertia of the mass experiencing the effect.

Thus, the Gyro is able to detect whether the robot is turning clockwise or counter-clockwise and provide different sensor values based on how much it’s been rotated. For a more thorough explanation of the Coriolis effect, visit this Wikipedia article. For more technical information on the on the internals of the VEX Gyro, you can check out its datasheet.For this tutorial, we mounted the VEX Gyro on our Swervebot robot model and connected it to Analog port 8 on the Cortex.

ROBOTC includes a number of sample programs for the Gyro. You can open the sample program below by going to File > Open Sample Program > Gyroscope > “Gyro Based Turns – Basic.c”.

A few additional notes about the Gyro and the program:
  • Typically all sensors are configured in ROBOTC using the Motors and Sensors Setup window. This can still be done with the Gyro, but lines 23-28 do so manually. The Gyro is an extremely sensitive sensor – it’s readings are affected by heat, fluctuations in voltage, and how long the sensor has been in use. These factors cause the sensor to accumulate an error, or drift, over time. By setting Analog Port 8 to “sensorNone” on line 24, all of the drift is wiped out from previous runs. The sensor is then reconfigured as a “sensorGyro” on line 27.
  • After the Gyro is configured on line 27, it’s very important that your robot is kept completely still for at least 1.1 seconds. During this time, ROBOTC and the Gyro perform a calibration process. The 2-second wait on line 28 is more than enough time for this process to occur.
  • There is a small amount of variance between each Gyro. ROBOTC has default values used for scaling the readings from the VEX Gyro into useful SensorValues, but you may need to make a slight adjustment for your sensor. The “SensorScale[]” command (commented out on line 31) allows you to do just that. If you find that your robot is turning too far or too little, un-comment line 31 and adjust the “260″ value as needed.
  • As the Gyro is turned, the values it returns are in tenths of degrees, positive and negative. Thus, a SensorValue of 3600 equals 360 degrees, or one full rotation. When the sensor is mounted horizontally, counter-clockwise movements will return values from 0 to -3600; clockwise movements will return values from 0 to 3600. Once the gyro completes one full revolution, the sensor value will “roll-over” to 0 by default (for example: …3597, 3598, 3599, 3600, 0, 1, 2, 3,…). To change the “roll-over” point, un-comment line 33 and change the value of “SensorFullCount” from 3600 to the desired value (7200, 18000, ect)
  • For a much more thorough explanation of the program, check out the tutorial video we produced, here.
#pragma config(Motor, port2, rightMotor, tmotorNormal, openLoop)
 #pragma config(Motor, port3, leftMotor, tmotorNormal, openLoop, reversed)
 //*!!Code automatically generated by 'ROBOTC' configuration wizard !!*//

/*+++++++++++++++++++++++++++++++++++++++++++++| Notes |++++++++++++++++++++++++++++++++++++++++++++
 Gyro Based Turns - Basic
 -This program instructs your robot to turn for the specified number of degrees in "degrees10".
 -For best sensor results, clear out the gyro and manually configure it at the begging of the code.
 -The Gyro is configured by default to provide values from 0 to -3600 for clockwise rotation,
 and 0 to 3600 for counter-clockwise rotation

Robot Model(s): Swervebot

[I/O Port] [Name] [Type] [Description]
 Motor Port 2 rightMotor VEX Motor Right side motor
 Motor Port 3 leftMotor VEX Motor Left side motor
 Analog Port 8 in8 VEX Gyro Top-center mounted,
 away from the Cortex

task main()
 //Completely clear out any previous sensor readings by setting the port to "sensorNone"
 SensorType[in8] = sensorNone;
 //Reconfigure Analog Port 8 as a Gyro sensor and allow time for ROBOTC to calibrate it
 SensorType[in8] = sensorGyro;

//Adjust SensorScale to correct the scaling for your gyro
 //SensorScale[in8] = 260;
 //Adjust SensorFullCount to set the "rollover" point. 3600 sets the rollover point to +/-3600
 //SensorFullCount[in8] = 3600;

//Specify the number of degrees for the robot to turn (1 degree = 10, or 900 = 90 degrees)
 int degrees10 = 900;

//While the absolute value of the gyro is less than the desired rotation...
 while(abs(SensorValue[in8]) < degrees10)
 //...continue turning
 motor[rightMotor] = 25;
 motor[leftMotor] = -25;

//Brief brake to stop some drift
 motor[rightMotor] = -5;
 motor[leftMotor] = 5;

Here’s a video of the robot moving, based on the code:

And again, just in case you missed it, a more detailed explanation of the program can be found in this tutorial video:

The VEX Gyro can be purchased from the RoboMatter store.

Written by Jesse Flot

October 13th, 2011 at 5:08 pm

Posted in Cortex,General News,VEX

Tagged with , , ,

Great tutorial on setting up ROBOTC for ’11-’12 FTC season

with 5 comments

Pattonville Green Army RoboticsPattonville High School’s Green Army Robotics team has put together a really nice tutorial on how to set up ROBOTC for the 2011-2012 FTC season.

Click here to go to their tutorial:

Setting up ROBOTC for the 2011-2012 FTC Season

Big Thanks to Green Army Robotics for putting so much effort in helping the community!

Written by Vu Nguyen

October 13th, 2011 at 12:55 pm

Posted in FTC,NXT